• Open Access

Transverse single spin asymmetries of forward neutrons in p+p, p+Al, and p+Au collisions at sNN=200GeV as a function of transverse and longitudinal momenta

U. A. Acharya et al. (PHENIX Collaboration)
Phys. Rev. D 105, 032004 – Published 11 February 2022

Abstract

In 2015 the PHENIX collaboration at the Relativistic Heavy Ion Collider recorded p+p, p+Al, and p+Au collision data at center of mass energies of sNN=200GeV with the proton beam(s) transversely polarized. At very forward rapidities η>6.8 relative to the polarized proton beam, neutrons were detected either inclusively or in (anti)correlation with detector activity related to hard collisions. The resulting single spin asymmetries, that were previously reported, have now been extracted as a function of the transverse momentum of the neutron as well as its longitudinal momentum fraction xF. The explicit kinematic dependence, combined with the correlation information allows for a closer look at the interplay of different mechanisms suggested to describe these asymmetries, such as hadronic interactions or electromagnetic interactions in ultraperipheral collisions, UPC. Events that are correlated with a hard collision indeed display a mostly negative asymmetry that increases in magnitude as a function of transverse momentum with only little dependence on xF. In contrast, events that are not likely to have emerged from a hard collision display positive asymmetries for the nuclear collisions with a kinematic dependence that resembles that of a UPC based model. Because the UPC interaction depends strongly on the charge of the nucleus, those effects are very small for p+p collisions, moderate for p+Al collisions, and large for p+Au collisions.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
1 More
  • Received 18 October 2021
  • Accepted 6 January 2022

DOI:https://doi.org/10.1103/PhysRevD.105.032004

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Particles & Fields

Authors & Affiliations

Click to Expand

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 105, Iss. 3 — 1 February 2022

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×