• Open Access

Margolus-Levitin quantum speed limit for an arbitrary fidelity

Niklas Hörnedal and Ole Sönnerborn
Phys. Rev. Research 5, 043234 – Published 12 December 2023

Abstract

The Mandelstam-Tamm and Margolus-Levitin quantum speed limits are two well-known evolution time estimates for isolated quantum systems. These bounds are usually formulated for fully distinguishable initial and final states, but both have tight extensions to systems that evolve between states with an arbitrary fidelity. However, the foundations of these extensions differ in some essential respects. The extended Mandelstam-Tamm quantum speed limit has been proven analytically and has a clear geometric interpretation. Furthermore, which systems saturate the limit is known. The derivation of the extended Margolus-Levitin quantum speed limit, on the other hand, is based on numerical estimates. Moreover, the limit lacks a geometric interpretation, and no complete characterization of the systems reaching it exists. In this paper, we derive the extended Margolus-Levitin quantum speed limit analytically and describe the systems that saturate the limit in detail. We also provide the limit with a symplectic-geometric interpretation, which indicates that it is of a different character than most existing quantum speed limits. At the end of the paper, we analyze the maximum of the extended Mandelstam-Tamm and Margolus-Levitin quantum speed limits and derive a dual version of the extended Margolus-Levitin quantum speed limit. The maximum limit is tight regardless of the fidelity of the initial and final states. However, the conditions under which the maximum limit is saturated differ depending on whether or not the initial state and the final state are fully distinguishable. The dual limit is also tight and follows from a time reversal argument. We describe the systems that saturate the dual quantum speed limit.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 18 May 2023
  • Accepted 13 November 2023

DOI:https://doi.org/10.1103/PhysRevResearch.5.043234

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by Bibsam.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Quantum Information, Science & Technology

Authors & Affiliations

Niklas Hörnedal1 and Ole Sönnerborn2,3,*

  • 1Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg, Luxembourg
  • 2Department of Mathematics and Computer Science, Karlstad University, 651 88 Karlstad, Sweden
  • 3Department of Physics, Stockholm University, 106 91 Stockholm, Sweden

  • *ole.sonnerborn@kau.se

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 5, Iss. 4 — December - December 2023

Subject Areas
Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Research

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×