• Open Access

Preparation of an exciton condensate of photons on a 53-qubit quantum computer

LeeAnn M. Sager, Scott E. Smart, and David A. Mazziotti
Phys. Rev. Research 2, 043205 – Published 9 November 2020
PDFHTMLExport Citation

Abstract

Quantum computation promises an exponential speedup of certain classes of classical calculations through the preparation and manipulation of entangled quantum states. So far, most molecular simulations on quantum computers, however, have been limited to small numbers of particles. Here we prepare a highly entangled state on a 53-qubit IBM quantum computer, representing 53 particles, which reveals the formation of an exciton condensate of photon particles and holes. While the experimental realization of ground state exciton condensates remained elusive for more than 50 years, such condensates were recently achieved for electron-hole pairs in graphene bilayers and metal chalcogenides. Our creation of ground state photon condensates has the potential to further the exploration of exciton condensates, and this novel preparation may play a role in realizing efficient room-temperature energy transport.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 11 May 2020
  • Accepted 25 September 2020

DOI:https://doi.org/10.1103/PhysRevResearch.2.043205

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Atomic, Molecular & Optical

Authors & Affiliations

LeeAnn M. Sager, Scott E. Smart, and David A. Mazziotti*

  • Department of Chemistry and James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA

  • *Corresponding author: damazz@uchicago.edu

Article Text

Click to Expand

Supplemental Material

Click to Expand

References

Click to Expand
Issue

Vol. 2, Iss. 4 — November - December 2020

Subject Areas
Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Research

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×