Macroscopic Quantum Electrodynamics and Duality

Stefan Yoshi Buhmann and Stefan Scheel
Phys. Rev. Lett. 102, 140404 – Published 10 April 2009

Abstract

We discuss under what conditions the duality between electric and magnetic fields is a valid symmetry of macroscopic quantum electrodynamics. It is shown that Maxwell’s equations in the absence of free charges satisfy duality invariance on an operator level, whereas this is not true for Lorentz forces and atom-field couplings in general. We prove that derived quantities such as Casimir forces, local-field corrected decay rates, as well as van der Waals potentials are invariant with respect to a global exchange of electric and magnetic quantities. This exact symmetry can be used to deduce the physics of new configurations on the basis of already established ones.

  • Received 13 June 2008

DOI:https://doi.org/10.1103/PhysRevLett.102.140404

©2009 American Physical Society

Authors & Affiliations

Stefan Yoshi Buhmann and Stefan Scheel

  • Quantum Optics and Laser Science, Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2AZ, United Kingdom

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 102, Iss. 14 — 10 April 2009

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×