Resonance energy transport and exchange in oscillator arrays

Agnessa Kovaleva and Leonid I. Manevitch
Phys. Rev. E 88, 022904 – Published 7 August 2013

Abstract

It is well known that complete energy transfer between two weakly coupled linear oscillators occurs only at resonance. If the oscillators are nonlinear, the amplitude dependence of their frequencies may destroy, in general, any eventual resonance. This means that no substantial energy transfer may occur unless, exceptionally, resonance persists during the transfer. In this paper, the self-sustained resonance is considered for an oscillator array consisting of n coupled linear oscillators (a primary system) initially excited by impulse loading and connected to an essentially nonlinear attachment (NLA). Under the condition of resonance, initial energy is transferred to the NLA and then travels back and forth between the linear and nonlinear oscillators. It is shown that the general mechanism of the energy transport is similar to that in the previously studied system of two coupled oscillators but, in contrast to the two degree-of-freedom case, the multidimensional system requires a proper tuning not only for the NLA but for the entire array. In this work, we develop an order-reduction procedure, which allows the separated dynamical analysis for the pair of nonlinearly coupled oscillators and the remaining (n1) linear oscillators. Using simplifications based on the low-order reduced model, we detect an admissible domain of parameters ensuring resonance interaction and then derive a closed-form approximate solution adequately describing the transient processes in the entire system. We obtain explicit approximate solutions for both conservative (complete energy exchange) and dissipative (irreversible energy transfer) systems and then illustrate the theoretical results by an example of the four degree-of-freedom system. Analytical results are confirmed by numerical simulations.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
2 More
  • Received 24 March 2013

DOI:https://doi.org/10.1103/PhysRevE.88.022904

©2013 American Physical Society

Authors & Affiliations

Agnessa Kovaleva1 and Leonid I. Manevitch2

  • 1Space Research Institute, Russian Academy of Sciences, Moscow 117997, Russia
  • 2Institute of Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 88, Iss. 2 — August 2013

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×