• Open Access

Collective synchronization through noise cancellation

Jeremy Worsfold and Tim Rogers
Phys. Rev. E 109, 024218 – Published 26 February 2024

Abstract

After decades of study, there are only two known mechanisms to induce global synchronization in a population of oscillators: Deterministic coupling and common forcing. The inclusion of independent noise in these models typically serves to drive disorder, increasing the stability of the incoherent state. Here we show that the reverse is also possible. We propose and analyze a simple general model of purely noise coupled oscillators. In the first explicit choice of noise coupling, we find the linear response around incoherence is identical to that of the paradigmatic Kuramoto model but exhibits binary phase locking instead of full coherence. We characterize the phase diagram, stationary states, and approximate low-dimensional dynamics for the model, revealing the curious behavior of this mechanism of synchronization. In the second minimal case we connect the final synchronized state to the initial conditions of the system.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 5 January 2023
  • Accepted 29 January 2024

DOI:https://doi.org/10.1103/PhysRevE.109.024218

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Nonlinear Dynamics

Authors & Affiliations

Jeremy Worsfold and Tim Rogers

  • Department of Mathematical Sciences, Centre for Mathematical Biology, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 109, Iss. 2 — February 2024

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×