Generalized frustration in the multidimensional Kuramoto model

Marcus A. M. de Aguiar
Phys. Rev. E 107, 044205 – Published 17 April 2023

Abstract

The Kuramoto model describes how coupled oscillators synchronize their phases as the intensity of the coupling increases past a threshold. The model was recently extended by reinterpreting the oscillators as particles moving on the surface of unit spheres in a D-dimensional space. Each particle is then represented by a D-dimensional unit vector; for D=2 the particles move on the unit circle and the vectors can be described by a single phase, recovering the original Kuramoto model. This multidimensional description can be further extended by promoting the coupling constant between the particles to a matrix K that acts on the unit vectors. As the coupling matrix changes the direction of the vectors, it can be interpreted as a generalized frustration that tends to hinder synchronization. In a recent paper we studied in detail the role of the coupling matrix for D=2. Here we extend this analysis to arbitrary dimensions. We show that, for identical particles, when the natural frequencies are set to zero, the system converges either to a stationary synchronized state, given by one of the real eigenvectors of K, or to an effective two-dimensional rotation, defined by one of the complex eigenvectors of K. The stability of these states depends on the set eigenvalues and eigenvectors of the coupling matrix, which controls the asymptotic behavior of the system, and therefore, can be used to manipulate these states. When the natural frequencies are not zero, synchronization depends on whether D is even or odd. In even dimensions the transition to synchronization is continuous and rotating states are replaced by active states, where the module of the order parameter oscillates while it rotates. If D is odd the phase transition is discontinuous and active states can be suppressed for some distributions of natural frequencies.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 11 January 2023
  • Accepted 24 March 2023

DOI:https://doi.org/10.1103/PhysRevE.107.044205

©2023 American Physical Society

Physics Subject Headings (PhySH)

Nonlinear Dynamics

Authors & Affiliations

Marcus A. M. de Aguiar

  • Instituto de Física “Gleb Wataghin”, Universidade Estadual de Campinas, Unicamp 13083-970, Campinas, São Paolo, Brazil

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 107, Iss. 4 — April 2023

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×