• Open Access

Positing the problem of stationary distributions of active particles as third-order differential equation

Derek Frydel
Phys. Rev. E 106, 024121 – Published 22 August 2022

Abstract

In this work, we obtain a third-order linear differential equation for stationary distributions of run-and-tumble particles in two dimensions in a harmonic trap. The equation represents the condition j=0, where j is a flux. Since an analogous equation for passive Brownian particles is first-order, a second- and third-order term are features of active motion. In all cases, the solution has a form of a convolution of two distributions: the Gaussian distribution representing the Boltzmann distribution of passive particles, and the beta distribution representing active motion at zero temperature.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 29 May 2022
  • Accepted 1 August 2022

DOI:https://doi.org/10.1103/PhysRevE.106.024121

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Statistical Physics & Thermodynamics

Authors & Affiliations

Derek Frydel

  • Department of Chemistry, Universidad Técnica Federico Santa María, Campus San Joaquin, 8320000 Santiago, Chile

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 106, Iss. 2 — August 2022

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×