Critical behavior of active Brownian particles: Connection to field theories

Thomas Speck
Phys. Rev. E 105, 064601 – Published 2 June 2022

Abstract

We explore the relation between active Brownian particles, a minimal particle-based model for active matter, and scalar field theories. Both show a liquid-gas-like phase transition toward stable coexistence of a dense liquid with a dilute active gas that terminates in a critical point. However, a comprehensive mapping between the particle-based model parameters and the effective coefficients governing the field theories has not been established yet. We discuss conflicting recent numerical results for the critical exponents of active Brownian particles in two dimensions. Starting from the intermediate effective hydrodynamic equations, we then present a construction for a scalar order parameter for active Brownian particles that yields the active model B+. We argue that a crucial ingredient is the coupling between density and polarization in the particle current. The renormalization flow close to two dimensions exhibits a pair of perturbative fixed points that limit the attractive basin of the Wilson-Fisher fixed point, with the perspective that the critical behavior of active Brownian particles in two dimensions is governed by a strong-coupling fixed point different from Wilson-Fisher and not necessarily corresponding to Ising universality.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 8 February 2022
  • Accepted 12 May 2022

DOI:https://doi.org/10.1103/PhysRevE.105.064601

©2022 American Physical Society

Physics Subject Headings (PhySH)

Statistical Physics & ThermodynamicsPolymers & Soft MatterGeneral Physics

Authors & Affiliations

Thomas Speck

  • Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128 Mainz, Germany

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 105, Iss. 6 — June 2022

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×