Evolutionary dynamics from deterministic microscopic ecological processes

Vaibhav Madhok
Phys. Rev. E 101, 032411 – Published 17 March 2020
PDFHTMLExport Citation

Abstract

The central goal of a dynamical theory of evolution is to abstract the mean evolutionary trajectory in the trait space by considering ecological processes at the level of the individual. In this work we develop such a theory for a class of deterministic individual-based models describing individual births and deaths, which captures the essential features of standard stochastic individual-based models and becomes identical to the latter under maximal competition. The key motivation is to derive the canonical equation of adaptive dynamics from this microscopic ecological model, which can be regarded as a paradigm to study evolution in a simple way and give it an intuitive geometric interpretation. Another goal is to study evolution and sympatric speciation under maximal competition. We show that these models, in the deterministic limit of adaptive dynamics, lead to the same equations that describe the unraveling of the mean evolutionary trajectory as those obtained from the standard stochastic models. We further study conditions under which these models lead to evolutionary branching and find them to be similar to those obtained from the standard stochastic models. We find that, although deterministic models result in a strong competition that leads to a speedup in the temporal dynamics of a population cloud in the phenotypic space as well as an increase in the rate of generation of biodiversity, they do not seem to result in an absolute increase in biodiversity as far as the total number of species is concerned. Hence, they essentially capture all the features of the standard stochastic model. Interestingly, the notion of a fitness function does not explicitly enter in our derivation of the canonical equation, thereby advocating a mechanistic view of evolution based on fundamental birth-death events where fitness is a derived quantity rather than a fundamental ingredient. We illustrate our work with the help of several examples and qualitatively compare the rate of unraveling of evolutionary trajectory and generation of biodiversity for the deterministic and standard individual-based models by showing the motion of population clouds in the trait space.

  • Figure
  • Figure
  • Figure
  • Received 12 April 2018
  • Revised 12 February 2020
  • Accepted 24 February 2020

DOI:https://doi.org/10.1103/PhysRevE.101.032411

©2020 American Physical Society

Physics Subject Headings (PhySH)

Physics of Living Systems

Authors & Affiliations

Vaibhav Madhok*

  • Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India

  • *vmadhok@gmail.com

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 101, Iss. 3 — March 2020

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×