• Editors' Suggestion

New measurement of θ13 via neutron capture on hydrogen at Daya Bay

F. P. An et al. (Daya Bay Collaboration)
Phys. Rev. D 93, 072011 – Published 21 April 2016
PDFHTMLExport Citation

Abstract

This article reports an improved independent measurement of neutrino mixing angle θ13 at the Daya Bay Reactor Neutrino Experiment. Electron antineutrinos were identified by inverse β-decays with the emitted neutron captured by hydrogen, yielding a data set with principally distinct uncertainties from that with neutrons captured by gadolinium. With the final two of eight antineutrino detectors installed, this study used 621 days of data including the previously reported 217-day data set with six detectors. The dominant statistical uncertainty was reduced by 49%. Intensive studies of the cosmogenic muon-induced Li9 and fast neutron backgrounds and the neutron-capture energy selection efficiency, resulted in a reduction of the systematic uncertainty by 26%. The deficit in the detected number of antineutrinos at the far detectors relative to the expected number based on the near detectors yielded sin22θ13=0.071±0.011 in the three-neutrino-oscillation framework. The combination of this result with the gadolinium-capture result is also reported.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
16 More
  • Received 14 March 2016

DOI:https://doi.org/10.1103/PhysRevD.93.072011

© 2016 American Physical Society

Physics Subject Headings (PhySH)

  1. Research Areas
Particles & Fields

Authors & Affiliations

Click to Expand

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 93, Iss. 7 — 1 April 2016

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×