Inertial nonvacuum states viewed from the Rindler frame

Kinjalk Lochan and T. Padmanabhan
Phys. Rev. D 91, 044002 – Published 2 February 2015

Abstract

The appearance of the inertial vacuum state in Rindler frame has been extensively studied in the literature, both from the point of view of quantum field theory developed using Rindler foliation and using the response of an Unruh-Dewitt detector. In comparison, less attention has been devoted to the study of inertial nonvacuum states when viewed from the Rindler frame. We provide a comprehensive study of this issue in this paper. We first present a general formalism describing the characterization of arbitrary inertial state (i) when described using an arbitrary foliation and (ii) using the response of an Unruh-DeWitt detector moving along an arbitrary trajectory. This allows us to calculate the mean number of particles in an arbitrary inertial state, when the QFT is described using an arbitrary foliation of spacetime or when the state is probed by a detector moving along an arbitrary trajectory. We use this formalism to explicitly compute the results for the Rindler frame and uniformly accelerated detectors. Any arbitrary inertial state will always have a thermal component in the Rindler frame with additional contributions arising from the nonvacuum nature. We classify the nature of the additional contributions in terms of functions characterizing the inertial state. We establish that for all physically well-behaved normalizable inertial states, the correction terms decrease rapidly with the energy of the Rindler mode so that the high frequency limit is dominated by the thermal noise in any normalizable inertial state. However, inertial states which are not strictly normalizable like, for example, the one-particle state with definite momentum, lead to a constant contribution at all high frequencies in the Rindler frame. We show that a similar behavior arises in the response of the Unruh-DeWitt detector as well. In the case of the detector response, we provide a physical interpretation for the constant contribution at high frequencies in terms of total detection rate of comoving inertial detectors. We also describe two different approaches for defining a transition rate for the Unruh-DeWitt detector, when the two-point function lacks the time translation invariance, and discuss several features of different definitions of transition rates. The implications are discussed.

  • Received 2 December 2014

DOI:https://doi.org/10.1103/PhysRevD.91.044002

© 2015 American Physical Society

Authors & Affiliations

Kinjalk Lochan* and T. Padmanabhan

  • IUCAA, Post Bag 4, Ganeshkhind, Pune University Campus, Pune 411 007, India

  • *kinjalk@iucaa.ernet.in
  • paddy@iucaa.ernet.in

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 91, Iss. 4 — 15 February 2015

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×