Relativistic theory of surficial Love numbers

Philippe Landry and Eric Poisson
Phys. Rev. D 89, 124011 – Published 11 June 2014

Abstract

A relativistic theory of surficial Love numbers, which characterize the surface deformation of a body subjected to tidal forces, was initiated by Damour and Nagar. We revisit this effort in order to extend it, clarify some of its aspects, and simplify its computational implementation. First, we refine the definition of surficial Love numbers proposed by Damour and Nagar and formulate it directly in terms of the deformed curvature of the body’s surface, a meaningful geometrical quantity. Second, we develop a unified theory of surficial Love numbers that applies equally well to material bodies and black holes. Third, we derive a compactness-dependent relation between the surficial and (electric-type) gravitational Love numbers of a perfect-fluid body and show that it reduces to the familiar Newtonian relation when the compactness is small. And fourth, we simplify the tasks associated with the practical computation of the surficial and gravitational Love numbers for a material body.

  • Figure
  • Figure
  • Received 27 April 2014

DOI:https://doi.org/10.1103/PhysRevD.89.124011

© 2014 American Physical Society

Authors & Affiliations

Philippe Landry and Eric Poisson

  • Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1, Canada

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 89, Iss. 12 — 15 June 2014

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×