• Open Access

QCD phase diagram and equation of state in background electric fields

G. Endrődi and G. Markó
Phys. Rev. D 109, 034506 – Published 8 February 2024

Abstract

The phase diagram and the equation of state of quantum chromodynamics (QCD) is investigated in the presence of weak background electric fields by means of continuum extrapolated lattice simulations. The complex action problem at nonzero electric field is circumvented by a novel Taylor expansion, enabling the determination of the linear response of the thermal QCD medium to constant electric fields—in contrast to simulations at imaginary electric fields, which, as we demonstrate, involve an infrared singularity. Besides the electric susceptibility of QCD matter, we determine the dependence of the Polyakov loop on the field strength to leading order. Our results indicate a plasma-type behavior with a negative susceptibility at all temperatures, as well as an increase in the transition temperature as the electric field grows.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 22 September 2023
  • Accepted 23 January 2024

DOI:https://doi.org/10.1103/PhysRevD.109.034506

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Particles & Fields

Authors & Affiliations

G. Endrődi and G. Markó

  • Fakultät für Physik, Universität Bielefeld, D-33615 Bielefeld, Germany

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 109, Iss. 3 — 1 February 2024

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×