• Open Access

Search for direct pair production of supersymmetric partners of τ leptons in the final state with two hadronically decaying τ leptons and missing transverse momentum in proton-proton collisions at s=13TeV

A. Tumasyan et al. (CMS Collaboration)
Phys. Rev. D 108, 012011 – Published 19 July 2023

Abstract

A search for the direct production of a pair of τ sleptons, the supersymmetric partners of τ leptons, is presented. Each τ slepton is assumed to decay to a τ lepton and the lightest supersymmetric particle (LSP), which is assumed to be stable and to not interact in the detector, leading to an imbalance in the total reconstructed transverse momentum. The search is carried out in events identified as containing two τ leptons, each decaying to one or more hadrons and a neutrino, and significant transverse momentum imbalance. In addition to scenarios in which the τ sleptons decay promptly, the search also addresses scenarios in which the τ sleptons have sufficiently long lifetimes to give rise to nonprompt τ leptons. The data were collected in proton-proton collisions at a center-of-mass energy of 13TeV at the CERN LHC with the CMS detector in 2016–2018, and correspond to an integrated luminosity of 138fb1. No significant excess is seen with respect to standard model expectations. Upper limits on cross sections for the pair production of τ sleptons are obtained in the framework of simplified models. In a scenario in which the τ sleptons are superpartners of left-handed τ leptons, and each undergoes a prompt decay to a τ lepton and a nearly massless LSP, τ slepton masses between 115 and 340 GeV are excluded. In a scenario in which the lifetime of the τ sleptons corresponds to cτ0=0.1mm, where τ0 represents the mean proper lifetime of the τ slepton, masses between 150 and 220 GeV are excluded.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
1 More
  • Received 5 July 2022
  • Accepted 17 August 2022

DOI:https://doi.org/10.1103/PhysRevD.108.012011

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.

© 2023 CERN, for the CMS Collaboration

Physics Subject Headings (PhySH)

  1. Research Areas
  1. Physical Systems
Particles & Fields

Authors & Affiliations

Click to Expand

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 108, Iss. 1 — 1 July 2023

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×