• Open Access

Infrared finite scattering theory in quantum field theory and quantum gravity

Kartik Prabhu, Gautam Satishchandran, and Robert M. Wald
Phys. Rev. D 106, 066005 – Published 6 September 2022

Abstract

It has been known since the earliest days of quantum field theory (QFT) that infrared divergences arise in scattering theory with massless fields. These infrared divergences are manifestations of the memory effect: At order 1/r a massless field generically will not return to the same value at late retarded times (u+) as it had at early retarded times (u). There is nothing singular about states with memory, but they do not lie in the standard Fock space. Infrared divergences are merely artifacts of trying to represent states with memory in the standard Fock space. If one is interested only in quantities directly relevant to collider physics, infrared divergences can be successfully dealt with by imposing an infrared cutoff, calculating inclusive quantities, and then removing the cutoff. However, this approach does not allow one to treat memory as a quantum observable and is highly unsatisfactory if one wishes to view the S-matrix as a fundamental quantity in QFT and quantum gravity, since the S-matrix itself is undefined. In order to have a well-defined S-matrix, it is necessary to define “in” and “out” Hilbert spaces that incorporate memory in a satisfactory way. Such a construction was given by Faddeev and Kulish for quantum electrodynamics (QED) with a massive charged field. Their construction can be understood as pairing momentum eigenstates of the charged particles with corresponding memory representations of the electromagnetic field to produce states of vanishing large gauge charges at spatial infinity. (This procedure is usually referred to as “dressing” the charged particles.) We investigate this procedure for QED with massless charged particles and show that, as a consequence of collinear divergences, the required dressing in this case has an infinite total energy flux, so that the states obtained in the Faddeev-Kulish construction are unphysical. An additional difficulty arises in Yang-Mills theory, due to the fact that the “soft Yang-Mills particles” used for the dressing contribute to the Yang-Mills charge-current flux, thereby invalidating the procedure used to construct eigenstates of large gauge charges at spatial infinity. We show that there are insufficiently many charge eigenstates to accommodate scattering theory. In quantum gravity, the analog of the Faddeev-Kulish construction would attempt to produce a Hilbert space of eigenstates of supertranslation charges at spatial infinity. Again, the Faddeev-Kulish dressing procedure does not produce the desired eigenstates because the dressing contributes to the null memory flux. We prove that there are no eigenstates of supertranslation charges at spatial infinity apart from the vacuum. Thus, analogs of the Faddeev-Kulish construction fail catastrophically in quantum gravity. We investigate some alternatives to Faddeev-Kulish constructions but find that these also do not work. We believe that if one wishes to treat scattering at a fundamental level in quantum gravity—as well as in massless QED and Yang-Mills theory—it is necessary to approach it from an algebraic viewpoint on the “in” and “out” states, wherein one does not attempt to “shoehorn” these states into some prechosen “in” and “out” Hilbert spaces. We outline the framework of such a scattering theory, which would be manifestly infrared finite.

  • Figure
  • Received 25 April 2022
  • Accepted 16 June 2022

DOI:https://doi.org/10.1103/PhysRevD.106.066005

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Gravitation, Cosmology & AstrophysicsParticles & Fields

Authors & Affiliations

Kartik Prabhu1,*, Gautam Satishchandran2,†, and Robert M. Wald2,‡

  • 1Department of Physics, University of California, Santa Barbara, California 93106, USA
  • 2Enrico Fermi Institute and Department of Physics, The University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, USA

  • *kartikprabhu@ucsb.edu
  • gautamsatish@uchicago.edu
  • rmwa@uchicago.edu

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 106, Iss. 6 — 15 September 2022

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×