• Open Access

Symmetries of magnetized horizons

Sasha Brenner, Gaston Giribet, and Luciano Montecchio
Phys. Rev. D 103, 124006 – Published 1 June 2021

Abstract

We study stationary black holes in the presence of an external strong magnetic field. In the case where the gravitational backreaction of the magnetic field is taken into account, such an scenario is well described by the Ernst-Wild solution to Einstein-Maxwell field equations, representing a charged, stationary black hole immersed in a Melvin magnetic universe. This solution, however, describes a physical situation only in the region close to the black hole. This is due to the following two reasons: First, Melvin spacetime is not asymptotically locally flat; second, the nonstatic Ernst-Wild solution is not even asymptotically Melvin due to the infinite extension of its ergoregion. All this might seem to be an obstruction to address an scenario like this; for instance, it seems to be an obstruction to compute conserved charges as this usually requires a clear notion of asymptotia. Here, we circumvent this obstruction by providing a method to compute the conserved charges of such a black hole by restricting the analysis to the near horizon region. We compute the Wald entropy, the mass, the electric charge, and the angular momentum of stationary black holes in highly magnetized environments from the horizon perspective, finding results in complete agreement with other formalisms.

  • Received 30 March 2021
  • Accepted 10 May 2021

DOI:https://doi.org/10.1103/PhysRevD.103.124006

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Gravitation, Cosmology & Astrophysics

Authors & Affiliations

Sasha Brenner, Gaston Giribet, and Luciano Montecchio

  • Physics Department, University of Buenos Aires FCEyN-UBA and IFIBA-CONICET, Ciudad Universitaria, Pabellón 1, 1428 Buenos Aires, Argentina

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 103, Iss. 12 — 15 June 2021

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×