Dissipative dynamics of a particle coupled to a field via internal degrees of freedom

Kanupriya Sinha, Adrián Ezequiel Rubio López, and Yiğit Subaşı
Phys. Rev. D 103, 056023 – Published 24 March 2021

Abstract

We study the nonequilibrium dissipative dynamics of the center of mass of a particle coupled to a field via its internal degrees of freedom. We model the internal and external degrees of freedom of the particle as quantum harmonic oscillators in 1+1D, with the internal oscillator coupled to a scalar quantum field at the center of mass position. Such a coupling results in a nonlinear interaction between the three pertinent degrees of freedom—the center of mass, internal degree of freedom, and the field. It is typically assumed that the internal dynamics is decoupled from that of the center of mass owing to their disparate characteristic timescales. Here we use an influence functional approach that allows one to account for the self-consistent backaction of the different degrees of freedom on each other, including the coupled nonequilibrium dynamics of the internal degree of freedom and the field, and their influence on the dissipation and noise of the center of mass. Considering a weak nonlinear interaction term, we employ a perturbative generating functional approach to derive a second order effective action and a corresponding quantum Langevin equation describing the non-equilibrium dynamics of the center of mass. We analyze the resulting dissipation and noise arising from the field and the internal degree of freedom as a composite environment. Furthermore, we establish a generalized fluctuation-dissipation relation for the late-time dissipation and noise kernels. Our results are pertinent to open quantum systems that possess intermediary degrees of freedom between system and environment, such as in the case of optomechanical interactions.

  • Figure
  • Received 19 January 2021
  • Accepted 5 March 2021

DOI:https://doi.org/10.1103/PhysRevD.103.056023

© 2021 American Physical Society

Physics Subject Headings (PhySH)

General PhysicsAtomic, Molecular & Optical

Authors & Affiliations

Kanupriya Sinha1,*, Adrián Ezequiel Rubio López2,†, and Yiğit Subaşı3,‡

  • 1Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
  • 2Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck, Austria
  • 3Computer, Computational and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

  • *kanu@princeton.edu
  • adrianrubiolopez0102@gmail.com
  • ysubasi@lanl.gov

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 103, Iss. 5 — 1 March 2021

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×