• Open Access

Propagation of the nuclear mean-field uncertainties with increasing distance from the parameter adjustment zone: Applications to superheavy nuclei

I. Dedes and J. Dudek
Phys. Rev. C 99, 054310 – Published 10 May 2019

Abstract

We combine the framework of the inverse problem theory and the Monte Carlo approach to formulate exact mathematical models that enable estimates of the uncertainty distributions for modeling predictions. We illustrate and discuss in particular what we refer to as the “NO GO property.” When the uncertainties of data constituting the input to the parameter adjustment procedures exceed certain critical value(s), even an exact modeling looses its stochastic reliability; its further use may provide “acceptably looking” rms deviations in the fitting zone with very likely meaningless, because they are unstable, predictions outside of it. We examine confidence intervals for intraneous (inside of the adjustment zone) and extraneous (outside of the adjustment zone) predictions and we demonstrate that “satisfactory” rms deviations in the intraneous modeling regime offer generally null certitude about the quality of extraneous predictions. Even though not entirely unknown, this property requires strong emphasizing since ignoring it has lead to misleading conclusions and confusing messages in the literature. We generalize our considerations to the realistic nuclear mean-field simulations of the properties of the nucleonic mean-field energies in spherical nuclei. We predict quantitatively the deterioration with increasing mass of the nucleonic-energy confidence intervals in superheavy nuclei. We show a strong dependence of those confidence intervals on the quantum characteristic of nucleonic states and provide detailed illustrations. In particular we demonstrate that, in the realistic predictions for the superheavy nuclei with the phenomenological Woods-Saxon Hamiltonian for up to Z114 or so, one obtains relatively stable predictions of the single-particle spectra with N180, while approaching the NO GO zone of this model for further increasing neutron numbers. Thus the main area of today's interest within the instrumental reach for the superheavy nuclei studies remains, according to these estimates for the Woods-Saxon modeling, within the stability zone.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 21 July 2018
  • Revised 27 March 2019

DOI:https://doi.org/10.1103/PhysRevC.99.054310

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

  1. Properties
Nuclear Physics

Authors & Affiliations

I. Dedes1 and J. Dudek2,1

  • 1Institute of Physics, Marie Curie-Skłodowska University, PL-20 031 Lublin, Poland
  • 2IPHC/DRS and Université de Strasbourg, 23 rue du Lœss, B.P. 28, F-67037 Strasbourg Cedex 2, France

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 99, Iss. 5 — May 2019

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review C

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×