Efficient gating of epitaxial boron nitride monolayers by substrate functionalization

A. Fedorov, C. S. Praveen, N. I. Verbitskiy, D. Haberer, D. Usachov, D. V. Vyalikh, A. Nefedov, C. Wöll, L. Petaccia, S. Piccinin, H. Sachdev, M. Knupfer, B. Büchner, S. Fabris, and A. Grüneis
Phys. Rev. B 92, 125440 – Published 28 September 2015
PDFHTMLExport Citation

Abstract

Insulating hexagonal boron nitride monolayers (hBN) are best known for being resistant to chemical functionalization. This property makes hBN an excellent substrate for graphene heterostructures, but limits its application as an active element in nanoelectronics where tunable electronic properties are needed. Moreover, the two-dimensional–materials' community wishes to learn more about the adsorption and intercalation characteristics of alkali metals on hBN, which have direct relevance to several electrochemistry experiments that are envisioned with layered materials. Here we provide results on ionic functionalization of hBN/metal interfaces with K and Li dopants. By combining angle-resolved photoemission spectroscopy (ARPES), x-ray photoelectron spectroscopy, and density functional theory calculations, we show that the metallic substrate readily ionizes the alkali dopants and exposes hBN to large electric fields and band-energy shifts. In particular, if hBN is in between the negatively charged substrate and the positive alkali ion, this allows us to directly study, using ARPES, the effects of large electric fields on the electron energy bands of hBN.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 15 May 2015
  • Revised 4 August 2015

DOI:https://doi.org/10.1103/PhysRevB.92.125440

©2015 American Physical Society

Authors & Affiliations

A. Fedorov1,2,3,*, C. S. Praveen4,*, N. I. Verbitskiy1,5,6, D. Haberer7, D. Usachov3, D. V. Vyalikh3,8, A. Nefedov9, C. Wöll9, L. Petaccia10, S. Piccinin4, H. Sachdev11, M. Knupfer2, B. Büchner2, S. Fabris4,†, and A. Grüneis1,‡

  • 1II. Physikalisches Institut, Universität zu Köln, Zülpicher Strasse 77, 50937 Köln, Germany
  • 2Institute for Solid State Research, IFW Dresden, P.O. Box 270116, D-01171 Dresden, Germany
  • 3St. Petersburg State University, St. Petersburg 198504, Russia
  • 4Theory@Elettra Group, CNR-IOM DEMOCRITOS and SISSA, via Bonomea 265, 34136 Trieste, Italy
  • 5Faculty of Physics, University of Vienna, Strudlhofgasse 4, A-1090 Vienna, Austria
  • 6Department of Materials Science, Moscow State University, Leninskiye Gory 1/3, 119992 Moscow, Russia
  • 7Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA
  • 8Institute of Solid State Physics, Dresden University of Technology, D-01062 Dresden, Germany
  • 9Institute für Funktionelle Grenzflächen (IFG), Karlsruher Institut für Technologie (KIT), Hermann-von-Helmoltz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
  • 10Elettra Sincrotrone Trieste, Strada Statale 14 km 163.5, 34149 Trieste, Italy
  • 11Max-Planck-Institut für Polymerforschung, Ackermannweg 10, D-55128 Mainz, Germany

  • *Authors contributed equally to this work.
  • fabris@democritos.it
  • grueneis@ph2.uni-koeln.de

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 92, Iss. 12 — 15 September 2015

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×