Strongly three-dimensional electronic structure and Fermi surfaces of SrFe2(As0.65P0.35)2: Comparison with BaFe2(As1xPx)2

H. Suzuki, T. Kobayashi, S. Miyasaka, T. Yoshida, K. Okazaki, L. C. C. Ambolode, II, S. Ideta, M. Yi, M. Hashimoto, D. H. Lu, Z.-X. Shen, K. Ono, H. Kumigashira, S. Tajima, and A. Fujimori
Phys. Rev. B 89, 184513 – Published 30 May 2014; Erratum Phys. Rev. B 95, 179901 (2017)
PDFHTMLExport Citation

Abstract

The isovalent-substituted iron-pnictide superconductor SrFe2(As1xPx)2 (x=0.35) has a slightly higher optimum critical temperature than the similar system BaFe2(As1xPx)2, and its parent compound SrFe2As2 has a much higher Néel temperature than BaFe2As2. We have studied the band structure and the Fermi surfaces of optimally doped SrFe2(As1xPx)2 by angle-resolved photoemission spectroscopy (ARPES). Three holelike Fermi surfaces (FSs) around (0,0) and two electronlike FSs around (π,π) have been observed as in the case of BaFe2(As1xPx)2. Measurements with different photon energies have revealed that the outermost hole FS is more strongly warped along the kz direction than the corresponding one in BaFe(As1xPx)2, and that the innermost one is an ellipsoidal pocket. The electron FSs are almost cylindrical, unlike the corrugated ones in BaFe(As1xPx)2. A comparison of the ARPES data with a first-principles band-structure calculation revealed that the quasiparticle mass renormalization factors are different not only between bands of different orbital character, but also between the hole and electron FSs of the same orbital character. By examining the nesting conditions between the hole and electron FSs, we conclude that magnetic interactions between FeAs layers rather than FS nesting play an important role in stabilizing the antiferromagnetic order. The insensitivity of superconductivity to the FS nesting can be explained if only the dxy and/or dxz/yz orbitals are active in inducing superconductivity or if FS nesting is not important for superconductivity.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 17 December 2013
  • Revised 9 May 2014

DOI:https://doi.org/10.1103/PhysRevB.89.184513

©2014 American Physical Society

Erratum

Erratum: Strongly three-dimensional electronic structure and Fermi surfaces of SrFe2(As0.65P0.35)2: Comparison with BaFe2(As1xPx)2 [Phys. Rev. B 89, 184513 (2014)]

H. Suzuki, T. Kobayashi, S. Miyasaka, T. Yoshida, K. Okazaki, L. C. C. Ambolode, II, S. Ideta, M. Yi, M. Hashimoto, D. H. Lu, Z.-X. Shen, K. Ono, H. Kumigashira, S. Tajima, and A. Fujimori
Phys. Rev. B 95, 179901 (2017)

Authors & Affiliations

H. Suzuki1, T. Kobayashi2, S. Miyasaka2,3, T. Yoshida1,3, K. Okazaki1, L. C. C. Ambolode, II1, S. Ideta1, M. Yi4, M. Hashimoto5, D. H. Lu5, Z.-X. Shen5, K. Ono6, H. Kumigashira6, S. Tajima2,3, and A. Fujimori1,3

  • 1Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
  • 2Department of Physics, Osaka University, Toyonaka, Osaka 560-8531, Japan
  • 3JST, Transformative Research-Project on Iron Pnictides (TRIP), Chiyoda, Tokyo 102-0075, Japan
  • 4Stanford Institute of Materials and Energy Sciences, Stanford University, Stanford, California 94305, USA
  • 5Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94305, USA
  • 6KEK, Photon Factory, Tsukuba, Ibaraki 305-0801, Japan

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 89, Iss. 18 — 1 May 2014

Reuse & Permissions
Access Options

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×