Screened environment-dependent reactive empirical bond-order potential for atomistic simulations of carbon materials

Romain Perriot, Xiang Gu, You Lin, Vasily V. Zhakhovsky, and Ivan I. Oleynik
Phys. Rev. B 88, 064101 – Published 19 August 2013
PDFHTMLExport Citation

Abstract

A screened environment-dependent reactive empirical bond-order (SED-REBO) potential has been developed for large-scale molecular dynamics (MD) simulations of carbon materials. Based on the second-generation REBO potential developed by Brenner and co-workers [J. Phys.: Condens. Matter 14, 783 (2002)], the SED-REBO potential overcomes the deficiencies of the REBO potential, which arise from a short range of interatomic interactions and their abrupt switching off at the cutoff distance, by increasing the range of interatomic interactions and eliminating the explicit switching function while introducing a simple yet efficient screening function. The increased cutoff distance allows the inclusion of interactions critically important for the physically correct description of bond breaking and bond remaking. An analytic form of the attractive and repulsive pairwise terms was devised to automatically become zero at distances above the cutoff, thus, eliminating the need for the switching function. The screening function effectively screens off the second- and further-nearest-neighbor interactions for calculation of energy and forces in a smooth and continuous way for both compression and expansion. The pairwise attractive and repulsive terms were refitted within a wide range of interatomic distances to properly describe large compressions and expansions of diamond and graphene as well as their behavior near equilibrium. Good performances of the SED-REBO potential to describe bond-breaking processes at extreme tensile stresses are demonstrated in large-scale MD simulations of the nanoindentation of graphene membranes. A computationally efficient version of the SED-REBO potential is introduced for large-scale MD simulations of shock-wave compression in carbon materials. The SED-REBO potential is implemented as a module in the Large-Scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) and is freely available.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
7 More
  • Received 23 March 2013

DOI:https://doi.org/10.1103/PhysRevB.88.064101

©2013 American Physical Society

Authors & Affiliations

Romain Perriot, Xiang Gu, You Lin, Vasily V. Zhakhovsky, and Ivan I. Oleynik

  • Department of Physics, University of South Florida, Tampa, Florida 33620, USA

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 88, Iss. 6 — 1 August 2013

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×