Topological phases in two-dimensional arrays of parafermionic zero modes

M. Burrello, B. van Heck, and E. Cobanera
Phys. Rev. B 87, 195422 – Published 13 May 2013

Abstract

It has recently been realized that zero modes with projective non-Abelian statistics, generalizing the notion of Majorana bound states, may exist at the interface between a superconductor and a ferromagnet along the edge of a fractional topological insulator (FTI). Here, we study two-dimensional architectures of these non-Abelian zero modes, whose interactions are generated by the charging and Josephson energies of the superconductors. We derive low-energy Hamiltonians for two different arrays of FTIs on the plane, revealing an interesting interplay between the real-space geometry of the system and its topological properties. On the one hand, in a geometry where the length of the FTI edges is independent on the system size, the array has a topologically ordered phase, giving rise to a qudit toric code Hamiltonian in perturbation theory. On the other hand, in a geometry where the length of the edges scales with system size, we find an exact duality to an Abelian lattice gauge theory and no topological order.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
4 More
  • Received 22 February 2013

DOI:https://doi.org/10.1103/PhysRevB.87.195422

©2013 American Physical Society

Authors & Affiliations

M. Burrello, B. van Heck, and E. Cobanera

  • Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, The Netherlands

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 87, Iss. 19 — 15 May 2013

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×