Entanglement and precession in two-dimensional dynamical quantum phase transitions

Stefano De Nicola, Alexios A. Michailidis, and Maksym Serbyn
Phys. Rev. B 105, 165149 – Published 27 April 2022

Abstract

Nonanalytic points in the return probability of a quantum state as a function of time, known as dynamical quantum phase transitions (DQPTs), have received great attention in recent years, but the understanding of their mechanism is still incomplete. In our recent work [Phys. Rev. Lett. 126, 040602 (2021)], we demonstrated that one-dimensional DQPTs can be produced by two distinct mechanisms, namely semiclassical precession and entanglement generation, leading to the definition of precession (pDQPTs) and entanglement (eDQPTs) dynamical quantum phase transitions. In this manuscript, we extend and investigate the notion of p- and eDQPTs in two-dimensional systems by considering semi-infinite ladders of varying width. For square lattices, we find that pDQPTs and eDQPTs persist and are characterized by similar phenomenology as in 1D: pDQPTs are associated with a magnetization sign change and a wide entanglement gap, while eDQPTs correspond to suppressed local observables and avoided crossings in the entanglement spectrum. However, DQPTs show higher sensitivity to the ladder width and other details, challenging the extrapolation to the thermodynamic limit especially for eDQPTs. Moving to honeycomb lattices, we also demonstrate that lattices with an odd number of nearest neighbors give rise to phenomenologies beyond the one-dimensional classification.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
6 More
  • Received 29 December 2021
  • Revised 4 April 2022
  • Accepted 5 April 2022

DOI:https://doi.org/10.1103/PhysRevB.105.165149

©2022 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

Stefano De Nicola1, Alexios A. Michailidis1,2, and Maksym Serbyn1

  • 1IST Austria, Am Campus 1, 3400 Klosterneuburg, Austria
  • 2Department of Theoretical Physics, University of Geneva, 24 quai Ernest-Ansermet, 1211 Geneva, Switzerland

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 105, Iss. 16 — 15 April 2022

Reuse & Permissions
Access Options

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×