• Open Access

Quantum error correction in the noisy intermediate-scale quantum regime for sequential quantum computing

Arvid Rolander, Adam Kinos, and Andreas Walther
Phys. Rev. A 105, 062604 – Published 10 June 2022

Abstract

We use density-matrix simulations to study the performance of three distance three quantum error correction (QEC) codes in the context of the rare-earth (RE) ion-doped crystal platform for quantum computing. We analyze pseudothresholds for these codes when parallel operations are not available, and examine the behavior both with and without resting errors. In RE systems, resting errors can be mitigated by extending the system's ground-state coherence time. For the codes we study, we find that if the ground-state coherence time is roughly 100 times larger than the excited-state coherence time, resting errors become small enough to be negligible compared to other error sources. This leads us to the conclusion that beneficial QEC could be achieved in the RE system with the expected gate fidelities available in the noisy intermediate-scale quantum regime. However, for codes using more qubits and operations, a factor of more than 100 would be required. Furthermore, we investigate how often QEC should be performed in a circuit. We find that for early experiments in RE systems, the minimal [[5,1,3]] would be most suitable as it has a high threshold error and uses few qubits. However, when more qubits are available the [[9,1,3]] surface code might be a better option due to its higher circuit performance. Our findings are important for steering experiments to an efficient path for realizing beneficial quantum error correcting codes in early RE systems where resources are limited.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 8 December 2021
  • Revised 18 May 2022
  • Accepted 24 May 2022

DOI:https://doi.org/10.1103/PhysRevA.105.062604

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by Bibsam.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Quantum Information, Science & Technology

Authors & Affiliations

Arvid Rolander, Adam Kinos, and Andreas Walther*

  • Department of Physics, Lund University, SE-22100 Lund, Sweden

  • *andreas.walther@fysik.lth.se

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 105, Iss. 6 — June 2022

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×