βAs2Te3: Pressure-induced three-dimensional Dirac semimetal with ultralow room-pressure lattice thermal conductivity

E. Lora da Silva, A. Leonardo, Tao Yang, M. C. Santos, R. Vilaplana, S. Gallego-Parra, A. Bergara, and F. J. Manjón
Phys. Rev. B 104, 024103 – Published 7 July 2021

Abstract

An ab initio study of βAs2Te3 (R3¯m symmetry) at hydrostatic pressures shows that this compound is a trivial small band-gap semiconductor at room pressure that undergoes a quantum topological phase transition to a 3D topological Dirac semimetal around 2 GPa. At higher pressures, the band gap reopens and again decreases above 4 GPa. Our calculations predict an insulator-metal transition above 6 GPa due to the closing of the band gap, with strong topological features persisting between 2 and 10 GPa with Z4=3 topological index. By investigating the lattice thermal conductivity (κL), we observe that close to room conditions κL is very low, either for the in-plane and the out-of-plane axis, with 0.098 and 0.023Wm1K1, respectively. This effect occurs due to the presence of two low-frequency optical modes, namely Eu and Eg, which increase the phonon-phonon scattering rate. Therefore, our results suggest that ultralow lattice thermal conductivities, which enable highly efficient thermoelectric materials, can be engineered in systems that are close to a structural instability derived from phonon Kohn anomalies. At higher pressures, the values of the in- and out-of-plane thermal conductivities not only increase in magnitude, but also approximate in value as the layered character of the compound decreases.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
3 More
  • Received 15 March 2021
  • Accepted 29 June 2021

DOI:https://doi.org/10.1103/PhysRevB.104.024103

©2021 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

E. Lora da Silva1,2,*, A. Leonardo3,4, Tao Yang5, M. C. Santos2, R. Vilaplana6, S. Gallego-Parra2, A. Bergara3,4,7, and F. J. Manjón2

  • 1IFIMUP, Departamento de Física e Astronomia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
  • 2Instituto de Diseño para la Fabricación y Producción Automatizada, MALTA Consolider Team, Universitat Politècnica de València, València, Spain
  • 3Departmento de Física, MALTA Consolider Team, Universidad del País Vasco, UPV/EHU, Spain
  • 4Donostia International Physics Center (DIPC), Donostia, Spain
  • 5College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
  • 6Centro de Tecnologías Físicas: Acústica, Materiales y Astrofísica, MALTA Consolider Team, Universitat Politècnica de València, València, Spain
  • 7Centro de Física de Materiales CFM, Centro Mixto CSIC-UPV/EHU, Donostia, Spain

  • *estelina.silva@fc.up.pt

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 104, Iss. 2 — 1 July 2021

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×