Unitary equivalence between ordinary intelligent states and generalized intelligent states

Hyunchul Nha
Phys. Rev. A 76, 053834 – Published 29 November 2007

Abstract

Ordinary intelligent states (OISs) hold equality in the Heisenberg uncertainty relation involving two noncommuting observables {A,B}, whereas generalized intelligent states (GISs) do so in the more generalized uncertainty relation, the Schrödinger-Robertson inequality. In general, OISs form a subset of GISs. However, if there exists a unitary evolution U that transforms the operators {A,B} to a new pair of operators in a rotation form, it is shown that an arbitrary GIS can be generated by applying the rotation operator U to a certain OIS. In this sense, the set of OISs is unitarily equivalent to the set of GISs. It is the case, for example, with the su(2) and the su(1,1) algebras which have been extensively studied, particularly in quantum optics. When these algebras are represented by two bosonic operators (nondegenerate case), or by a single bosonic operator (degenerate case), the rotation, or pseudorotation, operator U corresponds to phase shift, beam splitting, or parametric amplification, depending on two observables {A,B}.

  • Received 20 September 2007

DOI:https://doi.org/10.1103/PhysRevA.76.053834

©2007 American Physical Society

Authors & Affiliations

Hyunchul Nha*

  • Department of Physics, Texas A & M University at Qatar, P. O. Box 23874, Doha, Qatar

  • *phylove00@gmail.com

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 76, Iss. 5 — November 2007

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×