Noise-induced rectification in out-of-equilibrium structures

R. Salgado-García
Phys. Rev. E 99, 012128 – Published 16 January 2019
PDFHTMLExport Citation

Abstract

We consider the motion of overdamped particles over random potentials subjected to a Gaussian white noise and a time-dependent periodic external forcing. The random potential is modeled as the potential resulting from the interaction of a point particle with a random polymer. The random polymer is made up, by means of some stochastic process, from a finite set of possible monomer types. The process is assumed to reach a nonequilibrium stationary state, which means that every realization of a random polymer can be considered as an out-of-equilibrium structure. We show that the net flux of particles over this random medium is nonvanishing when the potential profile on every monomer is symmetric. We prove that this ratchetlike phenomenon is a consequence of the irreversibility of the stochastic process generating the polymer. On the contrary, when the process generating the polymer is at equilibrium (thus fulfilling the detailed balance condition) the system is unable to rectify the motion. We calculate the net flux of the particles in the adiabatic limit for a simple model and we test our theoretical predictions by means of Langevin dynamics simulations. We also show that, out of the adiabatic limit, the system also exhibits current reversals as well as nonmonotonic dependence of the diffusion coefficient as a function of forcing amplitude.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 16 May 2018
  • Revised 23 October 2018

DOI:https://doi.org/10.1103/PhysRevE.99.012128

©2019 American Physical Society

Physics Subject Headings (PhySH)

Statistical Physics & Thermodynamics

Authors & Affiliations

R. Salgado-García*

  • Centro de Investigación en Ciencias-IICBA, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Colonia Chamilpa, 62209, Cuernavaca Morelos, Mexico

  • *raulsg@uaem.mx

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 99, Iss. 1 — January 2019

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×