Scalar, electromagnetic, and gravitational self-forces in weakly curved spacetimes

Michael J. Pfenning and Eric Poisson
Phys. Rev. D 65, 084001 – Published 8 March 2002
PDFExport Citation

Abstract

We calculate the self-force experienced by a point scalar charge q, a point electric charge e, and a point mass m moving in a weakly curved spacetime characterized by a time-independent Newtonian potential Φ. We assume that the matter distribution responsible for this potential is bounded, so that ΦM/r at large distances r from the matter, whose total mass is M; otherwise, the Newtonian potential is left unspecified. (We use units in which G=c=1.) The self-forces are calculated by first computing the retarded Green’s functions for scalar, electromagnetic, and (linearized) gravitational fields in the weakly curved spacetime, and then evaluating an integral over the particle’s past world line. The self-force typically contains both a conservative and a nonconservative (radiation-reaction) part. For the scalar charge, the conservative part of the self-force is equal to 2ξq2Mr^/r3, where ξ is a dimensionless constant measuring the coupling of the scalar field to the spacetime curvature, and r^ is a unit vector pointing in the radial direction. For the electric charge, the conservative part of the self-force is e2Mr^/r3. For the massive particle, the conservative force vanishes. For the scalar charge, the radiation-reaction force is 13q2dg/dt, where g=Φ is the Newtonian gravitational field. For the electric charge, the radiation-reaction force is 23e2dg/dt. For the massive particle, the radiation-reaction force is 113m2dg/dt. Our result for the gravitational self-force is disturbing: a radiation-reaction force should not appear in the equations of motion at this level of approximation, and it should certainly not give rise to radiation antidamping. In the last section of the paper we prove that while a massive particle in a vacuum spacetime is subjected only to its self-force, it is also subjected to a matter-mediated force when it moves in a spacetime that contains matter; this force originates from the changes in the matter distribution that are induced by the presence of the particle. We show that the matter-mediated force contains a radiation-damping term that precisely cancels out the antidamping contribution from the gravitational self-force. When both forces are combined, the equations of motion are conservative, and they agree with the appropriate limit of the standard post-Newtonian equations of motion.

  • Received 15 December 2000

DOI:https://doi.org/10.1103/PhysRevD.65.084001

©2002 American Physical Society

Authors & Affiliations

Michael J. Pfenning and Eric Poisson

  • Department of Physics, University of Guelph, Guelph, Ontario, Canada N1G 2W1

References (Subscription Required)

Click to Expand
Issue

Vol. 65, Iss. 8 — 15 April 2002

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×