Interaction-induced insulating states in multilayer graphenes

Mikito Koshino, Kyoka Sugisawa, and Edward McCann
Phys. Rev. B 95, 235311 – Published 30 June 2017

Abstract

We explore the electronic ground states of Bernal-stacked multilayer graphenes using the Hartree-Fock mean-field approximation and the full-parameter band model. We find that the electron-electron interaction tends to open a band gap in multilayer graphenes from bilayer to eight-layer, while the nature of the insulating ground state sensitively depends on the band parameter γ2, which is responsible for the semimetallic nature of graphite. In four-layer graphene, particularly, the ground state assumes an odd-spatial-parity staggered phase at γ2=0, while an increasing, finite value of γ2 stabilizes a different state with even parity, where the electrons are attracted to the top layer and the bottom layer. The two phases are topologically distinct insulating states with different Chern numbers, and they can be distinguished by spin or valley Hall conductivity measurements. Multilayers with more than five layers also exhibit similar ground states with potential minima at the outermost layers, although the opening of a gap in the spectrum as a whole is generally more difficult than in four-layer because of a larger number of energy bands overlapping at the Fermi energy.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 10 May 2017

DOI:https://doi.org/10.1103/PhysRevB.95.235311

©2017 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

Mikito Koshino1, Kyoka Sugisawa2, and Edward McCann3

  • 1Department of Physics, Osaka University, Toyonaka 560-0043, Japan
  • 2Department of Physics, Tohoku University, Sendai 980-8578, Japan
  • 3Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 95, Iss. 23 — 15 June 2017

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×