Self-consistent three-dimensional models for quantum ballistic transport in open systems

E. Polizzi and N. Ben Abdallah
Phys. Rev. B 66, 245301 – Published 4 December 2002
PDFExport Citation

Abstract

A quasi-three-dimensional model for quantum ballistic transport in nanostructures is proposed. The model goes beyond the Thomas-Fermi approximation and is numerically more tractable than the full three-dimensional Schrödinger-Poisson model. Its derivation relies on the strong confinement of electrons at the heterojunction which allows us to split the three-dimensional Schrödinger equation into a one-dimensional Schrödinger equation for the confined direction and a two-dimensional Schrödinger equation in the transport direction. The space charge effects are taken into account in a three-dimensional framework. Numerical simulations of quantum waveguide devices such as T stubs and directional couplers are used to illustrate the accuracy of the quasi-3D model versus the fully 3D model and to show the importance of quantum effects.

  • Received 12 November 2001

DOI:https://doi.org/10.1103/PhysRevB.66.245301

©2002 American Physical Society

Authors & Affiliations

E. Polizzi

  • Laboratoire des Mathématiques pour l’Industrie et la Physique, Unité Mixte de Recherche CNRS 5640, Institut National des Sciences Appliqués, departement de Génie Mathématique et Modelisation, 135 Avenue de Rangueil, 31077 Toulouse Cedex 4, France

N. Ben Abdallah

  • Laboratoire des Mathématiques pour l’Industrie et la Physique, Unité Mixte de Recherche CNRS 5640, Institut National des Sciences Appliqués, departement de Génie Mathématique et Modelisation, 118 Route de Narbonne, 31062 Toulouse Cedex 4, France

References (Subscription Required)

Click to Expand
Issue

Vol. 66, Iss. 24 — 15 December 2002

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×