Plastic sliding of charge density waves: X-ray space resolved-studies versus theory of current conversion

S. Brazovskii, N. Kirova, H. Requardt, F. Ya. Nad, P. Monceau, R. Currat, J. E. Lorenzo, G. Grübel, and Ch. Vettier
Phys. Rev. B 61, 10640 – Published 15 April 2000
PDFExport Citation

Abstract

We present experimental and theoretical results on the distribution of deformations experienced by a sliding charge density wave (CDW) in connection with the normal collective current conversion process. High-resolution (30100μm) x-ray measurements of the satellite positional shift q have been performed on NbSe3 whiskers at 90 K. For the first time q has been determined with application of direct, as well as pulsed, currents and in the immediate vicinity of the injection extraction contact. We observe a steep variation of q near the contact that we model in terms of intensive nucleation processes of dislocation loops (DLs) at the host defects. A logarithmic time decay between pulses implies a creep of pinned DLs. A small constant residual gradient in the central part of the sample indicates that the conversion process is incomplete, consistent with a finite DL pinning threshold. On the theory side, general equations are derived to describe inhomogeneous distributions of deformations, electric fields, and currents. Numerical modeling under realistic experimental conditions is combined with model-independent relations. We discuss both similarities and contradictions with earlier studies.

  • Received 7 September 1999

DOI:https://doi.org/10.1103/PhysRevB.61.10640

©2000 American Physical Society

Authors & Affiliations

S. Brazovskii

  • Laboratoire de Physique Théorique et des Modèles Statistiques, Centre National de la Recherche, Bât.100, Université Paris-Sud, 91405 Orsay, Cedex, France
  • Landau Institute, 2, Kosygina St., GSP-1, 117940 Moscow, Russia

N. Kirova

  • Laboratoire de Physique Théorique et des Modèles Satistiques, Centre National de la Recherche, Bât.100, Université Paris-Sud, 91405 Orsay, Cedex, France

H. Requardt*

  • Centre de Recherches sur les Très Basses Températures, laboratoire associé à l’Université Joseph Fourier, Centre National de la Recherche Scientifique, Boîte Postale 166, 38042 Grenoble, Cedex 9, France
  • Institut Laue Langevin, Boîte Postale 156, 38042 Grenoble, France

F. Ya. Nad

  • Centre de Recherches sur les Très Basses Températures, laboratoire associé à l’Université Joseph Fourier, Centre National de la Recherche Scientifique, Boîte Postale 166, 38042 Grenoble, Cedex 9, France
  • Institute of Radio-Engineering and Electronics, 103907 Moscow, Russia

P. Monceau

  • Centre de Recherches sur les Très Basses Températures, laboratoire associé à l’Université Joseph Fourier, Centre National de la Recherche Scientifique, Boîte Postale 166, 38042 Grenoble, Cedex 9, France

R. Currat

  • Institut Laue Langevin, Boîte Postale 156, 38042 Grenoble, France

J. E. Lorenzo

  • Laboratoire de Cristallographie, Centre National de la Recherche Scientifique, Boîte Postale 166, 38042 Grenoble, France

G. Grübel and Ch. Vettier

  • European Synchrotron Radiation Facility, Boîte Postale 220, 38043 Grenoble, France

  • *Present address: Max-Planck Institut f. Metallforschung, Heisenbergstrasse 1, D 70569 Stuttgart, Germany.

References (Subscription Required)

Click to Expand
Issue

Vol. 61, Iss. 16 — 15 April 2000

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×