Monte Carlo study of the two-dimensional spin-1/2 quantum Heisenberg model: Spin correlations in La2CuO4

Efstratios Manousakis and Román Salvador
Phys. Rev. B 39, 575 – Published 1 January 1989
PDFExport Citation

Abstract

We study the spin-1/2 quantum ferromagnetic and antiferromagnetic Heisenberg model using Handscomb’s Monte Carlo (MC) method on square lattices of various sizes. As the temperature is lowered the calculated correlation length in the antiferromagnetic case grows more rapidly than in the ferromagnetic case. We also obtain the correlation length in the leading order of the high-temperature series expansion which, at high temperatures, agrees very well with the MC results. The correlation length obtained from the MC calculation for the ferromagnetic and antiferromagnetic case is compared with existing theories. Taking the average value for the antiferromagnetic coupling between the values suggested by neutron- and Raman-scattering experiments done on La2CuO4, we compare our results for the correlation length with those observed by the neutron-scattering experiments. We find that our results for the correlation lengths away from the three-dimensional (3D) Néel temperature TN∼200 K are consistent with the experimental findings. In order to obtain agreement close to the Néel temperature, however, we need to introduce an interlayer coupling between the CuO2 planes. The effect on a 3D coupling is only discussed in the framework of the quantum mechanical nonlinear σ model in three space dimensions. For the case of La2CuO4 we find that close to TN the σ model in 3+1 dimensions reduces to the classical 3D Heisenberg model whose critical properties are known and fit the neutron-scattering data for T∼TN.

  • Received 11 April 1988

DOI:https://doi.org/10.1103/PhysRevB.39.575

©1989 American Physical Society

Authors & Affiliations

Efstratios Manousakis

  • Supercomputer Computations Research Institute, Florida State University, Tallahassee, Florida 32306

Román Salvador

  • Control Data Corportion, Professional Services Division, and Supercomputer Computations Research Institute, Florida State University, Tallahassee, Florida 32306

References (Subscription Required)

Click to Expand
Issue

Vol. 39, Iss. 1 — 1 January 1989

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×