Hybrid quantum systems with trapped charged particles

Shlomi Kotler, Raymond W. Simmonds, Dietrich Leibfried, and David J. Wineland
Phys. Rev. A 95, 022327 – Published 21 February 2017

Abstract

Trapped charged particles have been at the forefront of quantum information processing (QIP) for a few decades now, with deterministic two-qubit logic gates reaching record fidelities of 99.9% and single-qubit operations of much higher fidelity. In a hybrid system involving trapped charges, quantum degrees of freedom of macroscopic objects such as bulk acoustic resonators, superconducting circuits, or nanomechanical membranes, couple to the trapped charges and ideally inherit the coherent properties of the charges. The hybrid system therefore implements a “quantum transducer,” where the quantum reality (i.e., superpositions and entanglement) of small objects is extended to include the larger object. Although a hybrid quantum system with trapped charges could be valuable both for fundamental research and for QIP applications, no such system exists today. Here we study theoretically the possibilities of coupling the quantum-mechanical motion of a trapped charged particle (e.g., an ion or electron) to the quantum degrees of freedom of superconducting devices, nanomechanical resonators, and quartz bulk acoustic wave resonators. For each case, we estimate the coupling rate between the charged particle and its macroscopic counterpart and compare it to the decoherence rate, i.e., the rate at which quantum superposition decays. A hybrid system can only be considered quantum if the coupling rate significantly exceeds all decoherence rates. Our approach is to examine specific examples by using parameters that are experimentally attainable in the foreseeable future. We conclude that hybrid quantum systems involving a single atomic ion are unfavorable compared with the use of a single electron because the coupling rates between the ion and its counterpart are slower than the expected decoherence rates. A system based on trapped electrons, on the other hand, might have coupling rates that significantly exceed decoherence rates. Moreover, it might have appealing properties such as fast entangling gates, long coherence, and flexible topology that is fully electronic in nature. Realizing such a system, however, is technologically challenging because it requires accommodating both a trapping technology and superconducting circuitry in a compatible manner. We review some of the challenges involved, such as the required trap parameters, electron sources, electrical circuitry, and cooling schemes in order to promote further investigations towards the realization of such a hybrid system.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
17 More
  • Received 9 August 2016

DOI:https://doi.org/10.1103/PhysRevA.95.022327

©2017 American Physical Society

Physics Subject Headings (PhySH)

Quantum Information, Science & Technology

Authors & Affiliations

Shlomi Kotler*, Raymond W. Simmonds, Dietrich Leibfried, and David J. Wineland

  • National Institute of Standards of Technology, 325 Broadway St., Boulder, Colorado 80305, USA

  • *shlomi.kotler@nist.gov

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 95, Iss. 2 — February 2017

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×