• Milestone

Wave function of the Universe

J. B. Hartle and S. W. Hawking
Phys. Rev. D 28, 2960 – Published 15 December 1983
An article within the collection: The Work of Stephen Hawking in Physical Review and the Physical Review D 50th Anniversary Milestones
PDFExport Citation

Abstract

The quantum state of a spatially closed universe can be described by a wave function which is a functional on the geometries of compact three-manifolds and on the values of the matter fields on these manifolds. The wave function obeys the Wheeler-DeWitt second-order functional differential equation. We put forward a proposal for the wave function of the "ground state" or state of minimum excitation: the ground-state amplitude for a three-geometry is given by a path integral over all compact positive-definite four-geometries which have the three-geometry as a boundary. The requirement that the Hamiltonian be Hermitian then defines the boundary conditions for the Wheeler-DeWitt equation and the spectrum of possible excited states. To illustrate the above, we calculate the ground and excited states in a simple minisuperspace model in which the scale factor is the only gravitational degree of freedom, a conformally invariant scalar field is the only matter degree of freedom and Λ>0. The ground state corresponds to de Sitter space in the classical limit. There are excited states which represent universes which expand from zero volume, reach a maximum size, and then recollapse but which have a finite (though very small) probability of tunneling through a potential barrier to a de Sitter-type state of continual expansion. The path-integral approach allows us to handle situations in which the topology of the three-manifold changes. We estimate the probability that the ground state in our minisuperspace model contains more than one connected component of the spacelike surface.

  • Received 29 July 1983

DOI:https://doi.org/10.1103/PhysRevD.28.2960

©1983 American Physical Society

Collections

This article appears in the following collections:

The Work of Stephen Hawking in Physical Review

To mark the passing of Stephen Hawking, we gathered together his 55 papers in Physical Review D and Physical Review Letters. They probe the edges of space and time, from "Black holes and thermodynamics” to "Wave function of the Universe."

Physical Review D 50th Anniversary Milestones

This collection of seminal papers from PRD highlights research that remains central to developments today in particle physics, quantum field and string theory, gravitation, cosmology, and particle astrophysics.

Authors & Affiliations

J. B. Hartle

  • Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637 and Institute for Theoretical Physics, University of California, Santa Barbara, California 93106

S. W. Hawking

  • Department of Applied Mathematics and Theoretical Physics, Silver Street, Cambridge, England and Institute for Theoretical Physics, University of California, Santa Barbara, California 93106

References (Subscription Required)

Click to Expand
Issue

Vol. 28, Iss. 12 — 15 December 1983

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×