Yeast DNA polymerase zeta (ζ) is essential for error-free replication past thymine glycol

  1. Robert E. Johnson,
  2. Sung-Lim Yu,
  3. Satya Prakash, and
  4. Louise Prakash1
  1. Sealy Center for Molecular Science, University of Texas Medical Branch at Galveston, Galveston, Texas 77555-1061, USA

Abstract

DNA polymerase zeta (Polζ) promotes the mutagenic bypass of DNA lesions in eukaryotes. Genetic studies in Saccharomyces cerevisiae have indicated that relative to the contribution of other pathways, Polζ makes only a modest contribution to lesion bypass. Intriguingly, however, disruption of the REV3 gene, which encodes the catalytic subunit of Polζ, causes early embryonic lethality in mice. Here, we present genetic and biochemical evidence for the requirement of yeast Polζ for predominantly error-free replication past thymine glycol (Tg), a DNA lesion formed frequently by free radical attack. These results raise the possibility that, as in yeast, in higher eukaryotes also, Polζ makes a major contribution to the replicative bypass of Tgs as well as other lesions that block synthesis by replicative DNA polymerases. Such a preeminent role of Polζ in lesion bypass would ensure that rapid cell divisions continue unabated during early embryonic development, thereby minimizing the generation of DNA strand breaks, chromosome aberrations, and the ensuing apoptotic response.

Keywords

Footnotes

  • 1 Corresponding author.

  • E-MAIL l.prakash{at}utmb.edu; FAX (409) 747-8608.

  • Article and publication are at http://www.genesdev.org/cgi/doi/10.1101/gad.1048303.

    • Received October 4, 2002.
    • Accepted October 31, 2002.
| Table of Contents

Life Science Alliance