Independent RNA polymerase II preinitiation complex dynamics and nucleosome turnover at promoter sites in vivo

  1. Michel Strubin1
  1. Department of Microbiology and Molecular Medicine, University Medical Centre (C.M.U.), 1211 Geneva 4, Switzerland

    Abstract

    Transcription by all three eukaryotic RNA polymerases involves the assembly of a large preinitiation complex (PIC) at gene promoters. The PIC comprises several general transcription factors (GTFs), including TBP, and the respective RNA polymerase. It has been suggested that some GTFs remain stably bound at active promoters to facilitate multiple transcription events. Here we used two complementary approaches to show that, in G1-arrested yeast cells, TBP exchanges very rapidly even at the most highly active RNA Pol II promoters. A similar situation is observed at RNA Pol III promoters. In contrast, TBP remains stably bound at RNA Pol I promoters. We also provide evidence that, unexpectedly, PIC dynamics are neither the cause nor the consequence of nucleosome exchange at most of the RNA Pol II promoters we analyzed. These results point to a stable reinitiation complex at RNA Pol I promoters and suggest independent PIC and nucleosome turnover at many RNA Pol II promoters.

    Footnotes

    • 1 Corresponding author

      E-mail Michel.Strubin{at}unige.ch

    • [Supplemental material is available for this article.]

    • Article published online before print. Article, supplemental material, and publication date are at http://www.genome.org/cgi/doi/10.1101/gr.157792.113.

      Freely available online through the Genome Research Open Access option.

    • Received March 18, 2013.
    • Accepted November 5, 2013.

    This article, published in Genome Research, is available under a Creative Commons License (Attribution-NonCommercial 3.0 Unported), as described at http://creativecommons.org/licenses/by-nc/3.0/.

    | Table of Contents
    OPEN ACCESS ARTICLE

    Preprint Server