Oct4:Sox2 binding is essential for establishing but not maintaining active and silent states of dynamically regulated genes in pluripotent cells

  1. Stephen T. Smale1,2,3
  1. 1Molecular Biology Institute, Immunology, and Molecular Genetics, University of California at Los Angeles, Los Angeles, California 90095, USA;
  2. 2Broad Stem Cell Research Center, Immunology, and Molecular Genetics, University of California at Los Angeles, Los Angeles, California 90095, USA;
  3. 3Department of Microbiology, Immunology, and Molecular Genetics, University of California at Los Angeles, Los Angeles, California 90095, USA;
  4. 4Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53715, USA;
  5. 5Department of Biological Chemistry, University of California at Los Angeles, Los Angeles, California 90095, USA
  1. Corresponding author: smale{at}mednet.ucla.edu

Abstract

Much has been learned about the mechanisms of action of pluripotency factors Oct4 and Sox2. However, as with other regulators of cell identity, little is known about the impact of disrupting their binding motifs in a native environment or the characteristics of genes they regulate. By quantitatively examining dynamic ranges of gene expression instead of focusing on conventional measures of differential expression, we found that Oct4 and Sox2 enhancer binding is strongly enriched near genes subject to large dynamic ranges of expression among cell types, with binding sites near these genes usually within superenhancers. Mutagenesis of representative Oct4:Sox2 motifs near such active, dynamically regulated genes revealed critical roles in transcriptional activation during reprogramming, with more limited roles in transcriptional maintenance in the pluripotent state. Furthermore, representative motifs near silent genes were critical for establishing but not maintaining the fully silent state, while genes whose transcript levels varied by smaller magnitudes among cell types were unaffected by nearby Oct4:Sox2 motifs. These results suggest that Oct4 and Sox2 directly establish both active and silent transcriptional states in pluripotent cells at a large number of genes subject to dynamic regulation during mammalian development, but are less important than expected for maintaining transcriptional states.

Keywords

Footnotes

  • Supplemental material is available for this article.

  • Article published online ahead of print. Article and publication date are online at http://www.genesdev.org/cgi/doi/10.1101/gad.350113.122.

  • Freely available online through the Genes & Development Open Access option.

  • Received September 19, 2022.
  • Accepted November 14, 2022.

This article, published in Genes & Development, is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/.

Related Article

| Table of Contents
OPEN ACCESS ARTICLE

Life Science Alliance