1887

Abstract

The aim of the current study was to determine how quorum sensing (QS) affects the production of secondary metabolites in strain PA23. A mutant (PA23) and an -acylhomoserine lactone (AHL)-deficient strain (PA23-6863) were generated that no longer inhibited the fungal pathogen . Both strains exhibited reduced pyrrolnitrin (PRN), phenazine (PHZ) and protease production. Moreover, and transcription was significantly reduced in PA23 and PA23-6863. As the majority of secondary metabolites are produced at the onset of stationary phase, we investigated whether cross-regulation occurs between QS and RpoS. Analysis of transcriptional fusions revealed that RpoS has a positive and negative effect on and , respectively. In a reciprocal manner, RpoS is positively regulated by QS. Characterization of a double mutant showed reduced antifungal activity as well as PRN and PHZ production, similar to the QS-deficient strains. Furthermore, but not was able to complement the double mutant for the aforementioned traits, indicating that the Phz QS system is a central regulator of PA23-mediated antagonism. Finally, we discovered that QS and RpoS have opposing effects on PA23 biofilm formation. While both QS-deficient strains produced little biofilm, the mutant showed enhanced biofilm production compared with PA23. Collectively, our findings indicate that QS controls diverse aspects of PA23 physiology, including secondary metabolism, RpoS and biofilm formation. As such, QS is expected to play a crucial role in PA23 biocontrol and persistence in the environment.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.054254-0
2012-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/4/896.html?itemId=/content/journal/micro/10.1099/mic.0.054254-0&mimeType=html&fmt=ahah

References

  1. Alexeyev M. F. ( 1999). The pKNOCK series of broad-host-range mobilizable suicide vectors for gene knockout and targeted DNA insertion into the chromosome of Gram-negative bacteria. Biotechniques 26:824–826, 828[PubMed]
    [Google Scholar]
  2. Bassler B. L. ( 2002). Small talk. Cell-to-cell communication in bacteria. Cell 109:421–424 [View Article][PubMed]
    [Google Scholar]
  3. Bertani I., Venturi V. ( 2004). Regulation of the N-acyl homoserine lactone-dependent quorum-sensing system in rhizosphere Pseudomonas putida WCS358 and cross-talk with the stationary-phase RpoS sigma factor and the global regulator GacA. Appl Environ Microbiol 70:5493–5502 [View Article][PubMed]
    [Google Scholar]
  4. Chin-A-Woeng T. F. C., Bloemburg G. V., van der Bij A. J., van der Drift K. M. G. M., Schripsema J., Kroon B., Scheffer B. J., Keel C., Bakker P. A. H. M. & other authors ( 1998). Biocontrol by phenazine-1-carboxamide-producing Pseudomonas chlororaphis PCL1391 of tomato root rot caused by Fusarium oxysporum f. sp. radicislycopersici . Mol Plant Microbe Interact 11:1069–1077 [View Article]
    [Google Scholar]
  5. Chin-A-Woeng T. F. C., van den Broek D., de Voer G., van der Drift K. M., Tuinman S., Thomas-Oates J. E., Lugtenberg B. J. J., Bloemberg G. V. ( 2001). Phenazine-1-carboxamide production in the biocontrol strain Pseudomonas chlororaphis PCL1391 is regulated by multiple factors secreted into the growth medium. Mol Plant Microbe Interact 14:969–979 [View Article][PubMed]
    [Google Scholar]
  6. Davey M. E., O’Toole G. A. ( 2000). Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847–867 [View Article][PubMed]
    [Google Scholar]
  7. de Kievit T. R., Seed P. C., Nezezon J., Passador L., Iglewski B. H. ( 1999). RsaL, a novel repressor of virulence gene expression in Pseudomonas aeruginosa . J Bacteriol 181:2175–2184[PubMed]
    [Google Scholar]
  8. Dong T., Schellhorn H. E. ( 2009). Control of RpoS in global gene expression of Escherichia coli in minimal media. Mol Genet Genomics 281:19–33 [View Article][PubMed]
    [Google Scholar]
  9. Duan K., Surette M. G. ( 2007). Environmental regulation of Pseudomonas aeruginosa PAO1 Las and Rhl quorum-sensing systems. J Bacteriol 189:4827–4836 [View Article][PubMed]
    [Google Scholar]
  10. Fernando W. G. D., Nakkeeran S., Zhang Y., Savchuk S. ( 2007). Biological control of Sclerotinia sclerotiorum (Lib.) de Bary by Pseudomonas and Bacillus species on canola petals. Crop Prot 26:100–107 [View Article]
    [Google Scholar]
  11. Finan T. M., Kunkel B., De Vos G. F., Signer E. R. ( 1986). Second symbiotic megaplasmid in Rhizobium meliloti carrying exopolysaccharide and thiamine synthesis genes. J Bacteriol 167:66–72[PubMed]
    [Google Scholar]
  12. Girard G., van Rij E. T., Lugtenberg B. J., Bloemberg G. V. ( 2006). Regulatory roles of psrA and rpoS in phenazine-1-carboxamide synthesis by Pseudomonas chlororaphis PCL1391. Microbiology 152:43–58 [View Article][PubMed]
    [Google Scholar]
  13. Haas D., Défago G. ( 2005). Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319 [View Article][PubMed]
    [Google Scholar]
  14. Haas D., Keel C. ( 2003). Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu Rev Phytopathol 41:117–153 [View Article][PubMed]
    [Google Scholar]
  15. Heeb S., Haas D. ( 2001). Regulatory roles of the GacS/GacA two-component system in plant-associated and other Gram-negative bacteria. Mol Plant Microbe Interact 14:1351–1363 [View Article][PubMed]
    [Google Scholar]
  16. Heeb S., Blumer C., Haas D. ( 2002). Regulatory RNA as mediator in GacA/RsmA-dependent global control of exoproduct formation in Pseudomonas fluorescens CHA0. J Bacteriol 184:1046–1056 [View Article][PubMed]
    [Google Scholar]
  17. Hoang T. T., Karkhoff-Schweizer R. R., Kutchma A. J., Schweizer H. P. ( 1998). A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212:77–86 [View Article][PubMed]
    [Google Scholar]
  18. House B. L., Mortimer M. W., Kahn M. L. ( 2004). New recombination methods for Sinorhizobium meliloti genetics. Appl Environ Microbiol 70:2806–2815 [View Article][PubMed]
    [Google Scholar]
  19. Khan S. R., Mavrodi D. V., Jog G. J., Suga H., Thomashow L. S., Farrand S. K. ( 2005). Activation of the phz operon of Pseudomonas fluorescens 2-79 requires the LuxR homolog PhzR, N-(3-OH-hexanoyl)-l-homoserine lactone produced by the LuxI homolog PhzI, and a cis-acting phz box. J Bacteriol 187:6517–6527 [View Article][PubMed]
    [Google Scholar]
  20. Latifi A., Foglino M., Tanaka K., Williams P., Lazdunski A. ( 1996). A hierarchical quorum-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhIR (VsmR) to expression of the stationary-phase sigma factor RpoS. Mol Microbiol 21:1137–1146 [View Article][PubMed]
    [Google Scholar]
  21. Ling E. A., Ellison M. L., Pesci E. C. ( 2009). A novel plasmid for detection of N-acyl homoserine lactones. Plasmid 62:16–21 [View Article][PubMed]
    [Google Scholar]
  22. Liu X., Bimerew M., Ma Y., Müller H., Ovadis M., Eberl L., Berg G., Chernin L. ( 2007). Quorum-sensing signaling is required for production of the antibiotic pyrrolnitrin in a rhizospheric biocontrol strain of Serratia plymuthica . FEMS Microbiol Lett 270:299–305 [View Article][PubMed]
    [Google Scholar]
  23. Maddula V. S. R. K., Pierson E. A., Pierson L. S. III ( 2008). Altering the ratio of phenazines in Pseudomonas chlororaphis (aureofaciens) strain 30-84: effects on biofilm formation and pathogen inhibition. J Bacteriol 190:2759–2766 [View Article][PubMed]
    [Google Scholar]
  24. Manuel J., Berry C., Selin C., Fernando W. G. D., de Kievit T. R. ( 2011). Repression of the antifungal activity of Pseudomonas sp. strain DF41 by the stringent response. Appl Environ Microbiol 77:5635–5642 [View Article][PubMed]
    [Google Scholar]
  25. Manuel J., Selin C., Fernando W. G. D., de Kievit T. R. ( 2012). Stringent response mutants of Pseudomonas chlororaphis PA23 exhibit enhanced antifungal activity against Sclerotinia sclerotiorum in vitro . Microbiology 158:207–216 [View Article][PubMed]
    [Google Scholar]
  26. Mavrodi D. V., Ksenzenko V. N., Bonsall R. F., Cook R. J., Boronin A. M., Thomashow L. S. ( 1998). A seven-gene locus for synthesis of phenazine-1-carboxylic acid by Pseudomonas fluorescens 2-79. J Bacteriol 180:2541–2548[PubMed]
    [Google Scholar]
  27. Mavrodi D. V., Blankenfeldt W., Thomashow L. S. ( 2006). Phenazine compounds in fluorescent Pseudomonas spp. biosynthesis and regulation. Annu Rev Phytopathol 44:417–445 [View Article][PubMed]
    [Google Scholar]
  28. Miller J. H. ( 1972). Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  29. O’Toole G. A., Kolter R. ( 1998). Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30:295–304 [View Article][PubMed]
    [Google Scholar]
  30. Ohman D. E., Cryz S. J., Iglewski B. H. ( 1980). Isolation and characterization of Pseudomonas aeruginosa PAO mutant that produces altered elastase. J Bacteriol 142:836–842[PubMed]
    [Google Scholar]
  31. Pesci E. C., Pearson J. P., Seed P. C., Iglewski B. H. ( 1997). Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa . J Bacteriol 179:3127–3132[PubMed]
    [Google Scholar]
  32. Pierson L. S. III, Thomashow L. S. ( 1992). Cloning and heterologous expression of the phenazine biosynthetic locus from Pseudomonas aureofaciens 30-84. Mol Plant Microbe Interact 5:330–339 [View Article][PubMed]
    [Google Scholar]
  33. Pierson L. S. III, Keppenne V. D., Wood D. W. ( 1994). Phenazine antibiotic biosynthesis in Pseudomonas aureofaciens 30-84 is regulated by PhzR in response to cell density. J Bacteriol 176:3966–3974[PubMed]
    [Google Scholar]
  34. Poritsanos N., Selin C., Fernando W. G. D., Nakkeeran S., de Kievit T. R. ( 2006). A GacS deficiency does not affect Pseudomonas chlororaphis PA23 fitness when growing on canola, in aged batch culture or as a biofilm. Can J Microbiol 52:1177–1188 [View Article][PubMed]
    [Google Scholar]
  35. Preston M. J., Seed P. C., Toder D. S., Iglewski B. H., Ohman D. E., Gustin J. K., Goldberg J. B., Pier G. B. ( 1997). Contribution of proteases and LasR to the virulence of Pseudomonas aeruginosa during corneal infections. Infect Immun 65:3086–3090[PubMed]
    [Google Scholar]
  36. Reimmann C., Ginet N., Michel L., Keel C., Michaux P., Krishnapillai V., Zala M., Heurlier K. & other authors ( 2002). Genetically programmed autoinducer destruction reduces virulence gene expression and swarming motility in Pseudomonas aeruginosa PAO1. Microbiology 148:923–932[PubMed]
    [Google Scholar]
  37. Sambrook J., Fritsch E. F., Maniatis T. ( 1989). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  38. Sarniguet A., Kraus J., Henkels M. D., Muehlchen A. M., Loper J. E. ( 1995). The sigma factor σs affects antibiotic production and biological control activity of Pseudomonas fluorescens Pf-5. Proc Natl Acad Sci U S A 92:12255–12259 [View Article][PubMed]
    [Google Scholar]
  39. Savchuk S. C., Dilantha Fernando W. G. ( 2004). Effect of timing of application and population dynamics on the degree of biological control of Sclerotinia sclerotiorum by bacterial antagonists. FEMS Microbiol Ecol 49:379–388 [View Article][PubMed]
    [Google Scholar]
  40. Schmidt S., Blom J. F., Pernthaler J., Berg G., Baldwin A., Mahenthiralingam E., Eberl L. ( 2009). Production of the antifungal compound pyrrolnitrin is quorum sensing-regulated in members of the Burkholderia cepacia complex. Environ Microbiol 11:1422–1437 [View Article][PubMed]
    [Google Scholar]
  41. Schuster M. C. P., Hawkins A. C., Harwood C. S., Greenberg E. P. ( 2004). The Pseudomonas aeruginosa RpoS regulon and its relationship to quorum sensing. Mol Microbiol 51:973–985 [View Article][PubMed]
    [Google Scholar]
  42. Schweizer H. D. ( 1993). Small broad-host-range gentamycin resistance gene cassettes for site-specific insertion and deletion mutagenesis. Biotechniques 15:831–834[PubMed]
    [Google Scholar]
  43. Selin C., Habibian R., Poritsanos N., Athukorala S. N., Fernando D., de Kievit T. R. ( 2010). Phenazines are not essential for Pseudomonas chlororaphis PA23 biocontrol of Sclerotinia sclerotiorum, but do play a role in biofilm formation. FEMS Microbiol Ecol 71:73–83 [View Article][PubMed]
    [Google Scholar]
  44. Spencer M., Ryu C.-M., Yang K.-Y., Kim Y. C., Kloepper J. W., Anderson A. ( 2003). Induced defense in tobacco by Pseudomonas chlororaphis O6 involves at least the ethylene pathway. Physiol Mol Plant Pathol 63:27–34 [View Article]
    [Google Scholar]
  45. Venturi V. ( 2006). Regulation of quorum sensing in Pseudomonas . FEMS Microbiol Rev 30:274–291 [View Article][PubMed]
    [Google Scholar]
  46. West S. E., Schweizer H. P., Dall C., Sample A. K., Runyen-Janecky L. J. ( 1994). Construction of improved Escherichia-Pseudomonas shuttle vectors derived from pUC18/19 and sequence of the region required for their replication in Pseudomonas aeruginosa . Gene 148:81–86 [View Article][PubMed]
    [Google Scholar]
  47. Whiteley M., Bangera M. G., Bumgarner R. E., Parsek M. R., Teitzel G. M., Lory S., Greenberg E. P. ( 2001). Gene expression in Pseudomonas aeruginosa biofilms. Nature 413:860–864 [View Article][PubMed]
    [Google Scholar]
  48. Wood D. W., Pierson L. S. III ( 1996). The phzI gene of Pseudomonas aureofaciens 30-84 is responsible for the production of a diffusible signal required for phenazine antibiotic production. Gene 168:49–53 [View Article][PubMed]
    [Google Scholar]
  49. Zhang Z., Pierson L. S. III ( 2001). A second quorum-sensing system regulates cell surface properties but not phenazine antibiotic production in Pseudomonas aureofaciens . Appl Environ Microbiol 67:4305–4315 [View Article][PubMed]
    [Google Scholar]
  50. Zhang Y., Fernando W. G. D., de Kievit T. R., Berry C., Daayf F., Paulitz T. C. ( 2006). Detection of antibiotic-related genes from bacterial biocontrol agents with polymerase chain reaction. Can J Microbiol 52:476–481 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.054254-0
Loading
/content/journal/micro/10.1099/mic.0.054254-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error