1887

Abstract

Bacterial histone-like proteins are important for nucleoid structure, cell growth, DNA replication, recombination and gene regulation. In this study, we focused on the role of DR0199 (the EbfC orthologue), a newly identified member of the nucleoid-associated protein family in The survival fraction of DR0199-null mutant decreased by tenfold after treatment with 50 mM HO, nearly sixfold at a 10 kGy dose of gamma ray and nearly eightfold at a UV exposure of 1000 J m compared with wild-type cells. The results of fluorescence labelling assays indicated that DR0199 protein localized in the nucleoid area of cells. Electrophoretic mobility shift assays demonstrated that DR0199 is a DNA-binding protein. Furthermore, DNA protection assays suggested that DR0199 shields DNA from hydroxyl radical- and DNase I-mediated cleavage. The supercoiling of relaxed plasmid DNA in the presence of topoisomerase I revealed that DR0199 constrains DNA supercoils . Collectively, these findings suggest that DR0199 is a protein with DNA-protective properties and histone-like features that are involved in protecting DNA from damage.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.053702-0
2012-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/4/936.html?itemId=/content/journal/micro/10.1099/mic.0.053702-0&mimeType=html&fmt=ahah

References

  1. Arora K., Whiteford D. C., Lau-Bonilla D., Davitt C. M., Dahl J. L. ( 2008). Inactivation of lsr2 results in a hypermotile phenotype in Mycobacterium smegmatis . J Bacteriol 190:4291–4300 [View Article][PubMed]
    [Google Scholar]
  2. Babb K., Bykowski T., Riley S. P., Miller M. C., Demoll E., Stevenson B. ( 2006). Borrelia burgdorferi EbfC, a novel, chromosomally encoded protein, binds specific DNA sequences adjacent to erp loci on the spirochete’s resident cp32 prophages. J Bacteriol 188:4331–4339 [View Article][PubMed]
    [Google Scholar]
  3. Barth M., Marschall C., Muffler A., Fischer D., Hengge-Aronis R. ( 1995). Role for the histone-like protein H-NS in growth phase-dependent and osmotic regulation of σS and many σS-dependent genes in Escherichia coli . J Bacteriol 177:3455–3464[PubMed]
    [Google Scholar]
  4. Battista J. R. ( 1997). Against all odds: the survival strategies of Deinococcus radiodurans . Annu Rev Microbiol 51:203–224 [View Article][PubMed]
    [Google Scholar]
  5. Blasius M., Hübscher U., Sommer S. ( 2008). Deinococcus radiodurans: what belongs to the survival kit?. Crit Rev Biochem Mol Biol 43:221–238 [View Article][PubMed]
    [Google Scholar]
  6. Chen H., Xu G., Zhao Y., Tian B., Lu H., Yu X., Xu Z., Ying N., Hu S., Hua Y. ( 2008). A novel OxyR sensor and regulator of hydrogen peroxide stress with one cysteine residue in Deinococcus radiodurans . PLoS ONE 3:e1602 [View Article][PubMed]
    [Google Scholar]
  7. Colangeli R., Helb D., Vilchèze C., Hazbón M. H., Lee C. G., Safi H., Sayers B., Sardone I., Jones M. B. & other authors ( 2007). Transcriptional regulation of multi-drug tolerance and antibiotic-induced responses by the histone-like protein Lsr2 in M. tuberculosis . PLoS Pathog 3:e87 [View Article][PubMed]
    [Google Scholar]
  8. Colangeli R., Haq A., Arcus V. L., Summers E., Magliozzo R. S., McBride A., Mitra A. K., Radjainia M., Khajo A. & other authors ( 2009). The multifunctional histone-like protein Lsr2 protects mycobacteria against reactive oxygen intermediates. Proc Natl Acad Sci U S A 106:4414–4418 [View Article][PubMed]
    [Google Scholar]
  9. Cooley A. E., Riley S. P., Kral K., Miller M. C., DeMoll E., Fried M. G., Stevenson B. ( 2009). DNA-binding by Haemophilus influenzae and Escherichia coli YbaB, members of a widely-distributed bacterial protein family. BMC Microbiol 9:137 [View Article][PubMed]
    [Google Scholar]
  10. Cox M. M., Battista J. R. ( 2005). Deinococcus radiodurans – the consummate survivor. Nat Rev Microbiol 3:882–892 [View Article][PubMed]
    [Google Scholar]
  11. Dillon S. C., Dorman C. J. ( 2010). Bacterial nucleoid-associated proteins, nucleoid structure and gene expression. Nat Rev Microbiol 8:185–195 [View Article][PubMed]
    [Google Scholar]
  12. Furukawa A., Hiraku Y., Oikawa S., Luxford C., Davies M. J., Kawanishi S. ( 2005). Guanine-specific DNA damage induced by gamma-irradiated histone. Biochem J 388:813–818 [View Article][PubMed]
    [Google Scholar]
  13. Grayling R. A., Bailey K. A., Reeve J. N. ( 1997). DNA binding and nuclease protection by the HMf histones from the hyperthermophilic archaeon Methanothermus fervidus . Extremophiles 1:79–88 [View Article][PubMed]
    [Google Scholar]
  14. GuanJun G., Lu F., HuiMing L., YueJin H. ( 2008). Engineering Deinococcus radiodurans into biosensor to monitor radioactivity and genotoxicity in environment. Chin Sci Bull 53:1675–1681 [View Article]
    [Google Scholar]
  15. Jain S. S., Tullius T. D. ( 2008). Footprinting protein-DNA complexes using the hydroxyl radical. Nat Protoc 3:1092–1100 [View Article][PubMed]
    [Google Scholar]
  16. Levin-Zaidman S., Englander J., Shimoni E., Sharma A. K., Minton K. W., Minsky A. ( 2003). Ringlike structure of the Deinococcus radiodurans genome: a key to radioresistance?. Science 299:254–256 [View Article][PubMed]
    [Google Scholar]
  17. Lim K., Tempczyk A., Parsons J. F., Bonander N., Toedt J., Kelman Z., Howard A., Eisenstein E., Herzberg O. ( 2003). Crystal structure of YbaB from Haemophilus influenzae (HI0442), a protein of unknown function coexpressed with the recombinational DNA repair protein RecR. Proteins 50:375–379 [View Article][PubMed]
    [Google Scholar]
  18. Luijsterburg M. S., Noom M. C., Wuite G. J., Dame R. T. ( 2006). The architectural role of nucleoid-associated proteins in the organization of bacterial chromatin: a molecular perspective. J Struct Biol 156:262–272 [View Article][PubMed]
    [Google Scholar]
  19. Makarova K. S., Aravind L., Wolf Y. I., Tatusov R. L., Minton K. W., Koonin E. V., Daly M. J. ( 2001). Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol Mol Biol Rev 65:44–79 [View Article][PubMed]
    [Google Scholar]
  20. Markillie L. M., Varnum S. M., Hradecky P., Wong K. K. ( 1999). Targeted mutagenesis by duplication insertion in the radioresistant bacterium Deinococcus radiodurans: radiation sensitivities of catalase (katA) and superoxide dismutase (sodA) mutants. J Bacteriol 181:666–669[PubMed]
    [Google Scholar]
  21. Meima R., Rothfuss H. M., Gewin L., Lidstrom M. E. ( 2001). Promoter cloning in the radioresistant bacterium Deinococcus radiodurans . J Bacteriol 183:3169–3175 [View Article][PubMed]
    [Google Scholar]
  22. Minton K. W. ( 1994). DNA repair in the extremely radioresistant bacterium Deinococcus radiodurans . Mol Microbiol 13:9–15 [View Article][PubMed]
    [Google Scholar]
  23. Nguyen H. H., de la Tour C. B., Toueille M., Vannier F., Sommer S., Servant P. ( 2009). The essential histone-like protein HU plays a major role in Deinococcus radiodurans nucleoid compaction. Mol Microbiol 73:240–252 [View Article][PubMed]
    [Google Scholar]
  24. Riley S. P., Bykowski T., Cooley A. E., Burns L. H., Babb K., Brissette C. A., Bowman A., Rotondi M., Miller M. C. & other authors ( 2009). Borrelia burgdorferi EbfC defines a newly-identified, widespread family of bacterial DNA-binding proteins. Nucleic Acids Res 37:1973–1983 [View Article][PubMed]
    [Google Scholar]
  25. Rimsky S. ( 2004). Structure of the histone-like protein H-NS and its role in regulation and genome superstructure. Curr Opin Microbiol 7:109–114 [View Article][PubMed]
    [Google Scholar]
  26. Slade D., Radman M. ( 2011). Oxidative stress resistance in Deinococcus radiodurans . Microbiol Mol Biol Rev 75:133–191 [View Article][PubMed]
    [Google Scholar]
  27. Stavans J., Oppenheim A. ( 2006). DNA-protein interactions and bacterial chromosome architecture. Phys Biol 3:R1–R10 [View Article][PubMed]
    [Google Scholar]
  28. Tian B., Wang H., Ma X., Hu Y., Sun Z., Shen S., Wang F., Hua Y. ( 2010). Proteomic analysis of membrane proteins from a radioresistant and moderate thermophilic bacterium Deinococcus geothermalis . Mol Biosyst 6:2068–2077 [View Article][PubMed]
    [Google Scholar]
  29. Travers A., Muskhelishvili G. ( 2005). Bacterial chromatin. Curr Opin Genet Dev 15:507–514 [View Article][PubMed]
    [Google Scholar]
  30. Wang L., Xu G., Chen H., Zhao Y., Xu N., Tian B., Hua Y. ( 2008). DrRRA: a novel response regulator essential for the extreme radioresistance of Deinococcus radiodurans . Mol Microbiol 67:1211–1222 [View Article][PubMed]
    [Google Scholar]
  31. Xu G., Wang L., Chen H., Lu H., Ying N., Tian B., Hua Y. ( 2008). RecO is essential for DNA damage repair in Deinococcus radiodurans . J Bacteriol 190:2624–2628 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.053702-0
Loading
/content/journal/micro/10.1099/mic.0.053702-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error