1887

Abstract

Extremely acidophilic microorganisms (optimum growth pH of ≤3) maintain a near neutral cytoplasmic pH via several homeostatic mechanisms, including an inside positive membrane potential created by potassium ions. Transcriptomic responses to pH stress in the thermoacidophilic archaeon, were investigated by growing cells without added sodium and/or potassium ions at both optimal and sub-optimal pH. Culturing the cells in the absence of added sodium or potassium ions resulted in a reduced growth rate compared to full-salt conditions as well as 43 and 75 significantly different RNA transcript ratios, respectively. Differentially expressed RNA transcripts during growth in the absence of added sodium ions included genes coding for permeases, a sodium/proline transporter and electron transport proteins. In contrast, culturing without added potassium ions resulted in higher RNA transcripts for similar genes as a lack of sodium ions plus genes related to spermidine that has a general role in response to stress and a decarboxylase that potentially consumes protons. The greatest RNA transcript response occurred when cells were grown in the absence of potassium and/or sodium at a sub-optimal pH. These adaptations included those listed above plus osmoregulated glucans and mechanosensitive channels that have previously been shown to respond to osmotic stress. In addition, data analyses revealed two co-expressed IclR family transcriptional regulator genes with a previously unknown role in the pH stress response. Our study provides additional evidence towards the importance of potassium in acidophile growth at acidic pH.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000314
2016-08-01
2024-03-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/8/1422.html?itemId=/content/journal/micro/10.1099/mic.0.000314&mimeType=html&fmt=ahah

References

  1. Alvarez A. F., Georgellis D. 2010; In vitro and in vivo analysis of the ArcB/A redox signalling pathway. In Meth Enzymol , pp. 205–228 Edited by Simon M. I., Crane B. R., Crane A. San Diego: Elsevier Academic Press Inc;
    [Google Scholar]
  2. Anders S., Huber W. 2010; Differential expression analysis for sequence count data. Genome Biol 11:R106 [View Article][PubMed]
    [Google Scholar]
  3. Anders S., Reyes A., Huber W. 2012; Detecting differential usage of exons from RNA-seq data. Genome Res 22:2008–2017 [View Article][PubMed]
    [Google Scholar]
  4. Anders S., Pyl P. T., Huber W. 2014; HTSeq – a Python framework to work with high-throughput sequencing data. Bioinformaticsbtu638
    [Google Scholar]
  5. Baker-Austin C., Dopson M., Wexler M., Sawers R. G., Bond P. L. 2005; Molecular insight into extreme copper resistance in the extremophilic archaeon ‘Ferroplasma acidarmanus’ Fer1. Microbiology 151:2637–2646 [View Article][PubMed]
    [Google Scholar]
  6. Baker-Austin C., Dopson M., Wexler M., Sawers R. G., Stemmler A., Rosen B. P., Bond P. L. 2007; Extreme arsenic resistance by the acidophilic archaeon ‘Ferroplasma acidarmanus' Fer1. Extremophiles 11:425–434 [View Article][PubMed]
    [Google Scholar]
  7. Benjamini Y., Hochberg Y. 1995; Controlling the false discovery rate: A practical and powerful approach to multiple testing. J Roy Statistical Soc B 57:289–300
    [Google Scholar]
  8. Berkner S., Lipps G. 2008; Genetic tools for Sulfolobus spp.: vectors and first applications. Arch Microbiol 190:217–230 [View Article][PubMed]
    [Google Scholar]
  9. Blankenberg D., Gordon A., Von Kuster G., Coraor N., Taylor J., Nekrutenko A. Galaxy Team 2010; Manipulation of FASTQ data with Galaxy. Bioinformatics 26:1783–1785 [View Article][PubMed]
    [Google Scholar]
  10. Bohin J. P. 2000; Osmoregulated periplasmic glucans in Proteobacteria. FEMS Microbiol Lett 186:11–19 [View Article]
    [Google Scholar]
  11. Cao Y., Jin X., Huang H., Derebe M. G., Levin E. J., Kabaleeswaran V., Pan Y., Punta M., Love J. et al. 2011; Crystal structure of a potassium ion transporter, TrkH. Nature 471:336–340 [View Article][PubMed]
    [Google Scholar]
  12. Chen L., Brügger K., Skovgaard M., Redder P., She Q., Torarinsson E., Greve B., Awayez M., Zibat A. et al. 2005; The genome of Sulfolobus acidocaldarius, a model organism of the Crenarchaeota. J Bacteriol 187:4992–4999 [View Article][PubMed]
    [Google Scholar]
  13. Cox J. C., Nicholls D. G., Ingledew W. J. 1979; Transmembrane electrical potential and transmembrane pH gradient in the acidophile Thiobacillus ferro-oxidans . Biochem J 178:195–200 [View Article][PubMed]
    [Google Scholar]
  14. Dibrova D. V., Galperin M. Y., Koonin E. V., Mulkidjanian A. Y. 2015; Ancient systems of sodium/potassium homeostasis as predecessors of membrane bioenergetics. Biochemistry 80:495–516 [View Article][PubMed]
    [Google Scholar]
  15. Dojer N., Bednarz P., Podsiadlo A., Wilczynski B. 2013; BNFinder2: Faster Bayesian network learning and Bayesian classification. Bioinformatics 29:2068–2070 [View Article][PubMed]
    [Google Scholar]
  16. Dopson M., Lindstrom E. B. 1999; Potential role of Thiobacillus caldus in arsenopyrite bioleaching. Appl Environ Microbiol 65:36–40[PubMed]
    [Google Scholar]
  17. Dopson M., Lindström E. B., Hallberg K. B. 2002; ATP generation during reduced inorganic sulfur compound oxidation by Acidithiobacillus caldus is exclusively due to electron transport phosphorylation. Extremophiles 6:123–129[PubMed] [CrossRef]
    [Google Scholar]
  18. Dopson M., Baker-Austin C., Hind A., Bowman J. P., Bond P. L. 2004; Characterization of Ferroplasma isolates and Ferroplasma acidarmanus sp. nov., extreme acidophiles from acid mine drainage and industrial bioleaching environments. Appl Environ Microbiol 70:2079–2088 [View Article][PubMed]
    [Google Scholar]
  19. Dopson M., Baker-Austin C., Bond P. L. 2005; Analysis of differential protein expression during growth states of Ferroplasma strains and insights into electron transport for iron oxidation. Microbiology 151:4127–4137 [View Article][PubMed]
    [Google Scholar]
  20. Dopson M. 2012; Physiological adaptations and biotechnological applications of acidophiles. In Extremophiles: Microbiology and Biotechnology pp. 265–294 Edited by Anitori R. Norwich: Horizon Scientific Press;
    [Google Scholar]
  21. Eichler J., Adams M. W. 2005; Posttranslational protein modification in Archaea. Microbiol Mol Biol Rev 69:393–425 [View Article][PubMed]
    [Google Scholar]
  22. Ferguson S. J., Ingledew W. J. 2008; Energetic problems faced by micro-organisms growing or surviving on parsimonious energy sources and at acidic pH: I. Acidithiobacillus ferrooxidans as a paradigm. Biochim Biophys Acta 1777:1471–1479 [View Article][PubMed]
    [Google Scholar]
  23. Follmann M., Becker M., Ochrombel I., Ott V., Krämer R., Marin K. 2009; Potassium transport in Corynebacterium glutamicum is facilitated by the putative channel protein CglK, which is essential for pH homeostasis and growth at acidic pH. J Bacteriol 191:2944–2952 [View Article][PubMed]
    [Google Scholar]
  24. Franceschini A., Szklarczyk D., Frankild S., Kuhn M., Simonovic M., Roth A., Lin J., Minguez P., Bork P. et al. 2013; STRING v9.1: protein–protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41:D808–815 [View Article][PubMed]
    [Google Scholar]
  25. Friedman N. 2004; Inferring cellular networks using probabilistic graphical models. Science 303:799–805 [View Article][PubMed]
    [Google Scholar]
  26. Fütterer O., Angelov A., Liesegang H., Gottschalk G., Schleper C., Schepers B., Dock C., Antranikian G., Liebl W. 2004; Genome sequence of Picrophilus torridus and its implications for life around pH 0. Proc Natl Acad Sci U S A 101:9091–9096 [View Article][PubMed]
    [Google Scholar]
  27. Goecks J., Nekrutenko A., Taylor J. Galaxy Team 2010; Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol 11:R86 [View Article][PubMed]
    [Google Scholar]
  28. Hettmann T., Schmidt C. L., Anemüller S., Zähringer U., Moll H., Petersen A., Schäfer G. 1998; Cytochrome b558/566 from the archaeon Sulfolobus acidocaldarius. A novel highly glycosylated, membrane-bound b-type hemoprotein. J Biol Chem 273:12032–12040 [View Article][PubMed]
    [Google Scholar]
  29. Hiller A., Henninger T., Schäfer G., Schmidt C. L. 2003; New genes encoding subunits of a cytochrome bc1-analogous complex in the respiratory chain of the hyperthermoacidophilic crenarchaeon Sulfolobus acidocaldarius. J Bioenerg Biomembr 35:121–131[PubMed] [CrossRef]
    [Google Scholar]
  30. Howland J. L. 1995 The Biochemistry of Archaea (Archaebacteria) Amsterdam: Elsevier;
    [Google Scholar]
  31. Hurley D., Araki H., Tamada Y., Dunmore B., Sanders D., Humphreys S., Affara M., Imoto S., Yasuda K. et al. 2012; Gene network inference and visualization tools for biologists: application to new human transcriptome datasets. Nucleic Acids Res 40:2377–2398 [View Article][PubMed]
    [Google Scholar]
  32. Janes K. A., Yaffe M. B. 2006; Data-driven modelling of signal-transduction networks. Nat Rev Mol Cell Biol 7:820–828 [View Article][PubMed]
    [Google Scholar]
  33. Kitko R. D., Wilks J. C., Garduque G. M., Slonczewski J. L. 2010; Osmolytes contribute to pH homeostasis of Escherichia coli . PLoS One 5:e10078 [View Article][PubMed]
    [Google Scholar]
  34. Kloda A., Martinac B. 2002; Common evolutionary origins of mechanosensitive ion channels in Archaea, Bacteria and cell-walled Eukarya. Archaea 1:35–44 [View Article][PubMed]
    [Google Scholar]
  35. Komorowski L., Verheyen W., Schäfer G. 2002; The archaeal respiratory supercomplex SoxM from S. acidocaldarius combines features of quinole and cytochrome c oxidases . Biol Chem 383:1791–1799 [View Article][PubMed]
    [Google Scholar]
  36. Krisko A., Copic T., Gabaldón T., Lehner B., Supek F. 2014; Inferring gene function from evolutionary change in signatures of translation efficiency. Genome Biol 15:R44 [View Article][PubMed]
    [Google Scholar]
  37. Kuo M. M., Haynes W. J., Loukin S. H., Kung C., Saimi Y. 2005; Prokaryotic K(+) channels: from crystal structures to diversity. FEMS Microbiol Rev 29:961–985 [View Article][PubMed]
    [Google Scholar]
  38. Langley K. E., Kennedy E. P. 1978; Partial purification and properties of CTP: phosphatidic acid cytidylyltransferase from membranes of Escherichia coli . J Bacteriol 136:85–95[PubMed]
    [Google Scholar]
  39. Langmead B., Trapnell C., Pop M., Salzberg S. L. 2009; Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25 [View Article][PubMed]
    [Google Scholar]
  40. Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R. 1000 Genome Project Data Processing Subgroup 2009; The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079 [View Article][PubMed]
    [Google Scholar]
  41. Londei P., Teixidò J., Acca M., Cammarano P., Amils R. 1986; Total reconstitution of active large ribosomal subunits of the thermoacidophilic archaebacterium Sulfolobus solfataricus . Nucleic Acids Res 14:2269–2285 [View Article][PubMed]
    [Google Scholar]
  42. Mangold S., Rao Jonna V., Dopson M. 2013; Response of Acidithiobacillus caldus toward suboptimal pH conditions. Extremophiles 17:689–696 [View Article][PubMed]
    [Google Scholar]
  43. Martinac B., Nomura T., Chi G., Petrov E., Rohde P. R., Battle A. R., Foo A., Constantine M., Rothnagel R. et al. 2014; Bacterial mechanosensitive channels: models for studying mechanosensory transduction. Antioxid Redox Signal 20:952–969 [View Article][PubMed]
    [Google Scholar]
  44. Molina-Henares A. J., Krell T., Eugenia Guazzaroni M., Segura A., Ramos J. L. 2006; Members of the IclR family of bacterial transcriptional regulators function as activators and/or repressors. FEMS Microbiol Rev 30:157–186 [View Article][PubMed]
    [Google Scholar]
  45. Mulkidjanian A. Y., Bychkov A. Y., Dibrova D. V., Galperin M. Y., Koonin E. V. 2012; Origin of first cells at terrestrial, anoxic geothermal fields. Proc Natl Acad Sci U S A 109:E821E830 [View Article][PubMed]
    [Google Scholar]
  46. Orell A., Peeters E., Vassen V., Jachlewski S., Schalles S., Siebers B., Albers S. V. 2013; Lrs14 transcriptional regulators influence biofilm formation and cell motility of Crenarchaea. ISME J 7:1886–1898 [View Article][PubMed]
    [Google Scholar]
  47. Osman D., Cavet J. S. 2010; Bacterial metal-sensing proteins exemplified by ArsR–SmtB family repressors. Nat Prod Rep 27:668–680 [View Article]
    [Google Scholar]
  48. Peyfoon E., Meyer B., Hitchen P. G., Panico M., Morris H. R., Haslam S. M., Albers S. V., Dell A. 2010; The S-layer glycoprotein of the crenarchaeote Sulfolobus acidocaldarius is glycosylated at multiple sites with chitobiose-linked N-glycans. Archaea 2010:10 [View Article][PubMed]
    [Google Scholar]
  49. Reed R. H., Warr S. R. C., Richardson D. L., Moore D. J., Stewart W. D. P. 1985; Multiphasic osmotic adjustment in a euryhaline cyanobacterium. FEMS Microbiol Lett 28:225–229 [View Article]
    [Google Scholar]
  50. Reimann J., Esser D., Orell A., Amman F., Pham T. K., Noirel J., Lindås A. C., Bernander R., Wright P. C. et al. 2013; Archaeal signal transduction: impact of protein phosphatase deletions on cell size, motility, and energy metabolism in Sulfolobus acidocaldarius . Mol Cell Proteomics 12:3908–3923 [View Article][PubMed]
    [Google Scholar]
  51. Robinson M. D., Oshlack A. 2010; A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 11:R25 [View Article][PubMed]
    [Google Scholar]
  52. Robinson M. D., McCarthy D. J., Smyth G. K. 2010; edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140 [View Article][PubMed]
    [Google Scholar]
  53. Sachs K., Perez O., Pe'er D., Lauffenburger D. A., Nolan G. P. 2005; Causal protein-signaling networks derived from multiparameter single-cell data. Science 308:523–529 [View Article][PubMed]
    [Google Scholar]
  54. Schäfer G. 1996; Bioenergetics of the archaebacterium Sulfolobus . Biochim Biophys Acta 1277:163–200 [View Article][PubMed]
    [Google Scholar]
  55. Schäfer G. 2004; Chapter 1: Respiratory chains in Archaea: from minimal systems to supercomplexes. In Respiration in Archaea and Bacteria pp. 1–33 Edited by Zannoni D. Netherlands: Springer; [CrossRef]
    [Google Scholar]
  56. She Q., Singh R. K., Confalonieri F., Zivanovic Y., Allard G., Awayez M. J., Chan-Weiher C. C., Clausen I. G., Curtis B. A. et al. 2001; The complete genome of the crenarchaeon Sulfolobus solfataricus P2. Proc Natl Acad Sci U S A 98:7835–7840 [View Article][PubMed]
    [Google Scholar]
  57. Simon G., Walther J., Zabeti N., Combet-Blanc Y., Auria R., van der Oost J., Casalot L. 2009; Effect of O2 concentrations on Sulfolobus solfataricus P2. FEMS Microbiol Lett 299:255–260 [View Article][PubMed]
    [Google Scholar]
  58. Slonczewski J. L., Fujisawa M., Dopson M., Krulwich T. A. 2009; Cytoplasmic pH measurement and homeostasis in bacteria and archaea. Adv Microb Physiol 55:1–79 [View Article][PubMed]
    [Google Scholar]
  59. Soo P. C., Horng Y. T., Lai M. J., Wei J. R., Hsieh S. C., Chang Y. L., Tsai Y. H., Lai H. C. 2007; Pirin regulates pyruvate catabolism by interacting with the pyruvate dehydrogenase E1 subunit and modulating pyruvate dehydrogenase activity. J Bacteriol 189:109–118 [View Article][PubMed]
    [Google Scholar]
  60. Suzuki I., Lee D., Mackay B., Harahuc L., Oh J. K. 1999; Effect of various ions, pH, and osmotic pressure on oxidation of elemental sulfur by Thiobacillus thiooxidans . Appl Environ Microbiol 65:5163–5168[PubMed]
    [Google Scholar]
  61. Tyson G. W., Chapman J., Hugenholtz P., Allen E. E., Ram R. J., Richardson P. M., Solovyev V. V., Rubin E. M., Rokhsar D. S. et al. 2004; Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428:37–43 [View Article][PubMed]
    [Google Scholar]
  62. van de Vossenberg J. L. C. M., Driessen A. J., Zillig W., Konings W. N. 1998; Bioenergetics and cytoplasmic membrane stability of the extremely acidophilic, thermophilic archaeon Picrophilus oshimae. Extremophiles 2:67–74 [View Article][PubMed]
    [Google Scholar]
  63. Wagner M., van Wolferen M., Wagner A., Lassak K., Meyer B. H., Reimann J., Albers S. V. 2012; Versatile genetic tool box for the Crenarchaeote Sulfolobus acidocaldarius . Front Microbiol 3:214 [View Article][PubMed]
    [Google Scholar]
  64. Wang Z., Gerstein M., Snyder M. 2009; RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63 [View Article][PubMed]
    [Google Scholar]
  65. Watkin E. L. J., Zammit C. M. 2015; Adaptation to extreme acidity and osmotic stress. In Acidophiles: Life in Extremely Acidic Environments Edited by Quatrini R., Johnson D. B. UK: Caister Academic Press;
    [Google Scholar]
  66. Yu J., Smith V. A., Wang P. P., Hartemink A. J., Jarvis E. D. 2004; Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinformatics 20:3594–3603 [View Article][PubMed]
    [Google Scholar]
  67. Zähringer U., Moll H., Hettmann T., Knirel Y. A., Schäfer G. 2000; Cytochrome b558/566 from the archaeon Sulfolobus acidocaldarius has a unique Asn-linked highly branched hexasaccharide chain containing 6-sulfoquinovose. Eur J Biochem 267:4144–4149 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000314
Loading
/content/journal/micro/10.1099/mic.0.000314
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error