1887

Abstract

Genomic surveillance can inform effective public health responses to pathogen outbreaks. However, integration of non-local data is rarely done. We investigate two large hospital outbreaks of a carbapenemase-carrying strain in Germany and show the value of contextual data. By screening about 10 000 genomes, over 400 000 metagenomes and two culture collections using and methods, we identify a total of 415 closely related genomes reported in 28 studies. We identify the relationship between the two outbreaks through time-dated phylogeny, including their respective origin. One of the outbreaks presents extensive hidden transmission, with descendant isolates only identified in other studies. We then leverage the genome collection from this meta-analysis to identify genes under positive selection. We thereby identify an inner membrane transporter () with a putative role in colistin resistance. Contextual data from other sources can thus enhance local genomic surveillance at multiple levels and should be integrated by default when available.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000741
2021-12-16
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/mgen/7/12/mgen000741.html?itemId=/content/journal/mgen/10.1099/mgen.0.000741&mimeType=html&fmt=ahah

References

  1. Holt KE, Wertheim H, Zadoks RN, Baker S, Whitehouse CA et al. Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proc Natl Acad Sci U S A 2015; 112:E3574–81 [View Article] [PubMed]
    [Google Scholar]
  2. Munoz-Price LS, Quinn JP. The spread of Klebsiella pneumoniae carbapenemases: a tale of strains, plasmids, and transposons. Clin Infect Dis 2009; 49:1739–1741 [View Article] [PubMed]
    [Google Scholar]
  3. Brandt C, Viehweger A, Singh A, Pletz MW, Wibberg D et al. Assessing genetic diversity and similarity of 435 KPC-carrying plasmids. Sci Rep 2019; 9:11223 [View Article] [PubMed]
    [Google Scholar]
  4. Sidjabat HE, Silveira FP, Potoski BA, Abu-Elmagd KM, Adams-Haduch JM et al. Interspecies spread of Klebsiella pneumoniae carbapenemase gene in a single patient. Clin Infect Dis 2009; 49:1736–1738 [View Article] [PubMed]
    [Google Scholar]
  5. David S, Reuter S, Harris SR, Glasner C, Feltwell T et al. Epidemic of carbapenem-resistant Klebsiella pneumoniae in Europe is driven by nosocomial spread. Nat Microbiol 2019; 4:1919–1929 [View Article] [PubMed]
    [Google Scholar]
  6. Lam MMC, Wick RR, Watts SC, Cerdeira LT, Wyres KL et al. A genomic surveillance framework and genotyping tool for Klebsiella pneumoniae and its related species complex. Nat Commun 2021; 12:
    [Google Scholar]
  7. Bush SJ, Foster D, Eyre DW, Clark EL, De Maio N et al. Genomic diversity affects the accuracy of bacterial single-nucleotide polymorphism-calling pipelines. Gigascience 2020; 9:giaa007 [View Article]
    [Google Scholar]
  8. Ducomble T, Faucheux S, Helbig U, Kaisers UX, König B et al. Large hospital outbreak of KPC-2-producing Klebsiella pneumoniae: investigating mortality and the impact of screening for KPC-2 with polymerase chain reaction. J Hosp Infect 2015; 89:179–185 [View Article] [PubMed]
    [Google Scholar]
  9. Ambretti S, Bassetti M, Clerici P, Petrosillo N, Tumietto F et al. Screening for carriage of carbapenem-resistant enterobacteriaceae in settings of high endemicity: a position paper from an italian working group on CRE infections. Antimicrob Resist Infect Control 2019; 8:136 [View Article] [PubMed]
    [Google Scholar]
  10. Kaiser T, Finstermeier K, Häntzsch M, Faucheux S, Kaase M et al. Stalking a lethal superbug by whole-genome sequencing and phylogenetics: Influence on unraveling a major hospital outbreak of carbapenem-resistant Klebsiella pneumoniae. Am J Infect Control 2018; 46:54–59 [View Article] [PubMed]
    [Google Scholar]
  11. Lübbert C, Faucheux S, Becker-Rux D, Laudi S, Dürrbeck A et al. Rapid emergence of secondary resistance to gentamicin and colistin following selective digestive decontamination in patients with KPC-2-producing Klebsiella pneumoniae: a single-centre experience. Int J Antimicrob Agents 2013; 42:565–570 [View Article] [PubMed]
    [Google Scholar]
  12. Poirel L, Jayol A, Nordmann P. Polymyxins: Antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes. Clin Microbiol Rev 2017; 30:557–596 [View Article] [PubMed]
    [Google Scholar]
  13. Pitt ME, Elliott AG, Cao MD, Ganesamoorthy D, Karaiskos I et al. Multifactorial chromosomal variants regulate polymyxin resistance in extensively drug-resistant Klebsiella pneumoniae. Microb Genom 2018; 4: [View Article]
    [Google Scholar]
  14. Meyer M, Kircher M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb Protoc 2010; 2010:pdb.prot5448 [View Article] [PubMed]
    [Google Scholar]
  15. Wick RR, Judd LM, Gorrie CL, Holt KE. Completing bacterial genome assemblies with multiplex MinION sequencing. Microb Genom 2017; 3:e000132 [View Article] [PubMed]
    [Google Scholar]
  16. Li W, O’Neill KR, Haft DH, DiCuccio M, Chetvernin V et al. RefSeq: expanding the prokaryotic genome annotation pipeline reach with protein family model curation. Nucleic Acids Res 2021; 49:D1020–D1028 [View Article]
    [Google Scholar]
  17. Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH et al. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol 2016; 17:132 [View Article] [PubMed]
    [Google Scholar]
  18. Pierce NT, Irber L, Reiter T, Brooks P, Brown CT. Large-scale sequence comparisons with sourmash. F1000Res 2019; 8:1006 [View Article] [PubMed]
    [Google Scholar]
  19. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 2018; 9:5114 [View Article] [PubMed]
    [Google Scholar]
  20. Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 2018; 34:3094–3100 [View Article] [PubMed]
    [Google Scholar]
  21. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018; 34:i884–i890 [View Article] [PubMed]
    [Google Scholar]
  22. Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de bruijn graph. Bioinformatics 2015; 31:1674–1676 [View Article] [PubMed]
    [Google Scholar]
  23. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article] [PubMed]
    [Google Scholar]
  24. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  25. Lam MMC, Wick RR, Wyres KL, Holt KE. Genomic surveillance framework and global population structure for Klebsiella pneumoniae. bioRxiv 2020
    [Google Scholar]
  26. Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O et al. In silico detection and typing of plasmids using plasmid finder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 2014; 58:3895–3903 [View Article] [PubMed]
    [Google Scholar]
  27. Jia B, Raphenya AR, Alcock B, Waglechner N, Guo P et al. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res 2017; 45:D566–D573 [View Article] [PubMed]
    [Google Scholar]
  28. Steinegger M, Söding J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat Biotechnol 2017; 35:1026–1028 [View Article] [PubMed]
    [Google Scholar]
  29. Xie Y, Wei Y, Shen Y, Li X, Zhou H et al. TADB 2.0: an updated database of bacterial type II toxin-antitoxin loci. Nucleic Acids Res 2018; 46:D749–D753 [View Article] [PubMed]
    [Google Scholar]
  30. Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using gubbins. Nucleic Acids Res 2015; 43:e15 [View Article] [PubMed]
    [Google Scholar]
  31. Li H, Durbin R. Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 2009; 25:1754–1760 [View Article] [PubMed]
    [Google Scholar]
  32. Page AJ, Taylor B, Delaney AJ, Soares J, Seemann T et al. SNP-sites: rapid efficient extraction of SNPs from multi-FASTA alignments. Microb Genom 2016; 2:e000056 [View Article] [PubMed]
    [Google Scholar]
  33. Sagulenko P, Puller V, Neher RA. Tree time: Maximum-likelihood phylodynamic analysis. Virus Evol 2018; 4:vex042 [View Article] [PubMed]
    [Google Scholar]
  34. Argimón S, Abudahab K, Goater RJE, Fedosejev A, Bhai J et al. Microreact: visualizing and sharing data for genomic epidemiology and phylogeography. Microb Genom 2016; 2:e000093 [View Article] [PubMed]
    [Google Scholar]
  35. Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 2019; 35:4453–4455 [View Article] [PubMed]
    [Google Scholar]
  36. Lees JA, Galardini M, Bentley SD, Weiser JN, Corander J. pyseer: a comprehensive tool for microbial pangenome-wide association studies. Bioinformatics 2018; 34:4310–4312 [View Article] [PubMed]
    [Google Scholar]
  37. Lee S, Abecasis GR, Boehnke M, Lin X. Rare-variant association analysis: study designs and statistical tests. Am J Hum Genet 2014; 95:5–23 [View Article] [PubMed]
    [Google Scholar]
  38. Consortium GO. The gene ontology resource: enriching a GOld mine. Nucleic Acids Res 2021; 49:D325–D334 [View Article] [PubMed]
    [Google Scholar]
  39. Mi H, Muruganujan A, Ebert D, Huang X, Thomas PD. PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res 2019; 47:D419–D426 [View Article] [PubMed]
    [Google Scholar]
  40. Murrell B, Weaver S, Smith MD, Wertheim JO, Murrell S et al. Gene-wide identification of episodic selection. Mol Biol Evol 2015; 32:1365–1371 [View Article] [PubMed]
    [Google Scholar]
  41. Spielman SJ, Weaver S, Shank SD, Magalis BF, Li M et al. Evolution of viral genomes: Interplay between selection, recombination, and other forces. Methods Mol Biol 2019; 1910:427–468 [View Article]
    [Google Scholar]
  42. Yang J, Anishchenko I, Park H, Peng Z, Ovchinnikov S et al. Improved protein structure prediction using predicted interresidue orientations. Proc Natl Acad Sci U S A 2020; 117:1496–1503 [View Article] [PubMed]
    [Google Scholar]
  43. Koslicki D, Falush D, Jansson JK. MetaPalette: a k-mer painting approach for metagenomic taxonomic profiling and quantification of novel strain variation. mSystems 2016; 1:e00020-16 [View Article]
    [Google Scholar]
  44. Rodríguez-Beltrán J, DelaFuente J, León-Sampedro R, MacLean RC, San Millán Á. Beyond horizontal gene transfer: the role of plasmids in bacterial evolution. Nat Rev Microbiol 2021; 19:347–359 [View Article] [PubMed]
    [Google Scholar]
  45. Tonkin-Hill G, MacAlasdair N, Ruis C, Weimann A, Horesh G et al. Producing polished prokaryotic pangenomes with the panaroo pipeline. Genome Biol 2020; 21:180 [View Article] [PubMed]
    [Google Scholar]
  46. Rezaei Javan R, Ramos-Sevillano E, Akter A, Brown J, Brueggemann AB. Prophages and satellite prophages are widespread in streptococcus and may play a role in pneumococcal pathogenesis. Nat Commun 2019; 10:4852 [View Article] [PubMed]
    [Google Scholar]
  47. Surleac M, Czobor Barbu I, Paraschiv S, Popa LI, Gheorghe I et al. Whole genome sequencing snapshot of multi-drug resistant Klebsiella pneumoniae strains from hospitals and receiving wastewater treatment plants in southern romania. PLoS One 2020; 15:e0228079 [View Article] [PubMed]
    [Google Scholar]
  48. Duchêne S, Holt KE, Weill FX, Le Hello S, Hawkey J et al. Genome-scale rates of evolutionary change in bacteria. Microb Genom 2016; 2:e000094 [View Article] [PubMed]
    [Google Scholar]
  49. Jousset AB, Bonnin RA, Rosinski-Chupin I, Girlich D, Cuzon G et al. A 4.5-year within-patient evolution of a colistin-resistant Klebsiella pneumoniae carbapenemase-producing K. pneumoniae sequence type 258. Clin Infect Dis 2018; 67:1388–1394 [View Article] [PubMed]
    [Google Scholar]
  50. Gibson B, Eyre-Walker A. Investigating evolutionary rate variation in bacteria. J Mol Evol 2019; 87:317–326 [View Article] [PubMed]
    [Google Scholar]
  51. Munoz-Price LS, Poirel L, Bonomo RA, Schwaber MJ, Daikos GL et al. Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect Dis 2013; 13:785–796 [View Article] [PubMed]
    [Google Scholar]
  52. Bathoorn E, Tsioutis C, da Silva Voorham JM, Scoulica EV, Ioannidou E et al. Emergence of pan-resistance in KPC-2 carbapenemase-producing Kklebsiella pneumoniae in Crete, Greece: a close call. J Antimicrob Chemother 2016; 71:1207–1212 [View Article] [PubMed]
    [Google Scholar]
  53. Meletis G, Chatzopoulou F, Fragkouli A, Alexandridou M, Mavrovouniotis I et al. Whole-genome sequencing study of KPC-encoding Kklebsiella pneumoniae isolated in Greek private laboratories from non-hospitalised patients. J Glob Antimicrob Resist 2020; 20:78–81 [View Article] [PubMed]
    [Google Scholar]
  54. Zhou K, Lokate M, Deurenberg RH, Tepper M, Arends JP et al. Use of whole-genome sequencing to trace, control and characterize the regional expansion of extended-spectrum β-lactamase producing ST15 Klebsiella pneumoniae. Sci Rep 2016; 6:20840 [View Article] [PubMed]
    [Google Scholar]
  55. Lübbert C, Straube L, Stein C, Makarewicz O, Schubert S et al. Colonization with extended-spectrum beta-lactamase-producing and carbapenemase-producing enterobacteriaceae in international travelers returning to Germany. Int J Med Microbiol 2015; 305:148–156 [View Article] [PubMed]
    [Google Scholar]
  56. Stohr J, Verweij JJ, Buiting AGM, Rossen JWA, Kluytmans J et al. Within-patient plasmid dynamics in Klebsiella pneumoniae during an outbreak of a carbapenemase-producing Klebsiella pneumoniae. PLoS One 2020; 15:e0233313 [View Article]
    [Google Scholar]
  57. Pullinger GD, Lax AJ. A salmonella dublin virulence plasmid locus that affects bacterial growth under nutrient-limited conditions. Mol Microbiol 1992; 6:1631–1643 [View Article] [PubMed]
    [Google Scholar]
  58. Cuzon G, Naas T, Nordmann P. Functional characterization of tn4401, a tn3-based transposon involved in blaKPC gene mobilization. Antimicrob Agents Chemother 2011; 55:5370–5373 [View Article] [PubMed]
    [Google Scholar]
  59. McConville TH, Annavajhala MK, Giddins MJ, Macesic N, Herrera CM et al. CrrB positively regulates High-Level polymyxin resistance and virulence in Klebsiella pneumoniae. Cell Rep 2020; 33:108313 [View Article] [PubMed]
    [Google Scholar]
  60. Jayol A, Nordmann P, Brink A, Poirel L. Heteroresistance to colistin in Klebsiella pneumoniae associated with alterations in the PhoPQ regulatory system. Antimicrob Agents Chemother 2015; 59:2780–2784 [View Article] [PubMed]
    [Google Scholar]
  61. Saber MM, Shapiro BJ. Benchmarking bacterial genome-wide association study methods using simulated genomes and phenotypes. Microb Genom 2020; 6: [View Article]
    [Google Scholar]
  62. Barton N, Hermisson J, Nordborg M. Why structure matters. Elife 2019; 8:e45380 [View Article] [PubMed]
    [Google Scholar]
  63. Sul JH, Martin LS, Eskin E. Population structure in genetic studies: Confounding factors and mixed models. PLoS Genet 2018; 14:e1007309 [View Article] [PubMed]
    [Google Scholar]
  64. Jayol A, Poirel L, Brink A, Villegas MV, Yilmaz M et al. Resistance to colistin associated with a single amino acid change in protein PmrB among Klebsiella pneumoniae isolates of worldwide origin. Antimicrob Agents Chemother 2014; 58:4762–4766 [View Article] [PubMed]
    [Google Scholar]
  65. Hoch JA, Varughese KI. Keeping signals straight in phosphorelay signal transduction. J Bacteriol 2001; 183:4941–4949 [View Article] [PubMed]
    [Google Scholar]
  66. Hsieh PF, Lin HH, Lin TL, Wang JT. CadC regulates cad and tdc operons in response to gastrointestinal stresses and enhances intestinal colonization of Klebsiella pneumoniae. J Infect Dis 2010; 202:52–64 [View Article] [PubMed]
    [Google Scholar]
  67. Stahlhut SG, Chattopadhyay S, Struve C, Weissman SJ, Aprikian P et al. Population variability of the FimH type 1 fimbrial adhesin in Klebsiella pneumoniae. J Bacteriol 2009; 191:1941–1950 [View Article] [PubMed]
    [Google Scholar]
  68. Paul S, Linardopoulou EV, Billig M, Tchesnokova V, Price LB et al. Role of homologous recombination in adaptive diversification of extraintestinal Escherichia coli. J Bacteriol 2013; 195:231–242 [View Article] [PubMed]
    [Google Scholar]
  69. Sabnis A, Hagart KL, Klöckner A, Becce M, Evans LE et al. Colistin kills bacteria by targeting lipopolysaccharide in the cytoplasmic membrane. Elife 2021; 10:e65836 [View Article] [PubMed]
    [Google Scholar]
  70. Schneider E, Hunke S. ATP-binding-cassette (ABC) transport systems: functional and structural aspects of the ATP-hydrolyzing subunits/domains. FEMS Microbiol Rev 1998; 22:1–20 [View Article] [PubMed]
    [Google Scholar]
  71. McDaniel C, Su S, Panmanee W, Lau GW, Browne T et al. A putative ABC transporter permease is necessary for resistance to acidified nitrite and EDTA in pseudomonas aeruginosa under aerobic and anaerobic planktonic and biofilm conditions. Front Microbiol 2016; 7:291 [View Article] [PubMed]
    [Google Scholar]
  72. Greene NP, Kaplan E, Crow A, Koronakis V. Antibiotic resistance mediated by the MacB ABC transporter family: A structural and functional perspective. Front Microbiol 2018; 9:950 [View Article] [PubMed]
    [Google Scholar]
  73. Karalewitz AA, Miller SI. Multidrug-resistant Acinetobacter baumannii chloramphenicol resistance requires an inner membrane permease. Antimicrob Agents Chemother 2018; 62:e00513-18 [View Article]
    [Google Scholar]
  74. Abramson J, Smirnova I, Kasho V, Verner G, Iwata S et al. The lactose permease of Escherichia coli: overall structure, the sugar-binding site and the alternating access model for transport. FEBS Lett 2003; 555:96–101 [View Article] [PubMed]
    [Google Scholar]
  75. Guan L, Mirza O, Verner G, Iwata S, Kaback HR. Structural determination of wild-type lactose permease. Proc Natl Acad Sci U S A 2007; 104:15294–15298 [View Article] [PubMed]
    [Google Scholar]
  76. Zhan HQ, Najmi M, Lin K, Aluri S, Fiser A et al. A proton-coupled folate transporter mutation causing hereditary folate malabsorption locks the protein in an inward-open conformation. J Biol Chem 2020; 295:15650–15661 [View Article] [PubMed]
    [Google Scholar]
  77. Sahin-Tóth M, Frillingos S, Lawrence MC, Kaback HR. The sucrose permease of Escherichia coli: functional significance of cysteine residues and properties of a cysteine-less transporter. Biochemistry 2000; 39:6164–6169 [View Article] [PubMed]
    [Google Scholar]
  78. Zhou Z, White KA, Polissi A, Georgopoulos C, Raetz CR. Function of Escherichia coli MsbA, an essential ABC family transporter, in lipid a and phospholipid biosynthesis. J Biol Chem 1998; 273:12466–12475 [View Article] [PubMed]
    [Google Scholar]
  79. Garmory HS, Titball RW. ATP-binding cassette transporters are targets for the development of antibacterial vaccines and therapies. Infect Immun 2004; 72:6757–6763 [View Article] [PubMed]
    [Google Scholar]
  80. Stoesser N, Phan HTT, Seale AC, Aiken Z, Thomas S et al. Genomic epidemiology of complex, multispecies, plasmid-borne bla KPC carbapenemase in enterobacterales in the united kingdom from 2009 to 2014. Antimicrob Agents Chemother 2020; 64:e02244-19 [View Article] [PubMed]
    [Google Scholar]
  81. David S, Cohen V, Reuter S, Sheppard AE, Giani T et al. Integrated chromosomal and plasmid sequence analyses reveal diverse modes of carbapenemase gene spread among Klebsiella pneumoniae. Proc Natl Acad Sci U S A 2020; 117:25043–25054 [View Article] [PubMed]
    [Google Scholar]
  82. Tascini C, Tagliaferri E, Giani T, Leonildi A, Flammini S et al. Synergistic activity of colistin plus rifampin against colistin-resistant KPC-producing Klebsiella pneumoniae. Antimicrob Agents Chemother 2013; 57:3990–3993 [View Article] [PubMed]
    [Google Scholar]
  83. Gorrie CL, Mirceta M, Wick RR, Edwards DJ, Thomson NR et al. Gastrointestinal carriage is a major reservoir of Klebsiella pneumoniae infection in intensive care patients. Clin Infect Dis 2017; 65:208–215 [View Article]
    [Google Scholar]
  84. Lübbert C, Lippmann N, Busch T, Kaisers UX, Ducomble T et al. Long-term carriage of Klebsiella pneumoniae carbapenemase-2-producing K pneumoniae after a large single-center outbreak in germany. Am J Infect Control 2014; 42:376–380 [View Article] [PubMed]
    [Google Scholar]
  85. Lübbert C, Faucheux S, Becker-Rux D, Laudi S, Dürrbeck A et al. Rapid emergence of secondary resistance to gentamicin and colistin following selective digestive decontamination in patients with KPC-2-producing Klebsiella pneumoniae: a single-centre experience. Int J Antimicrob Agents 2013; 42:565–570 [View Article] [PubMed]
    [Google Scholar]
  86. Janssen AB, van Hout D, Bonten MJM, Willems RJL, van Schaik W. Microevolution of acquired colistin resistance in enterobacteriaceae from ICU patients receiving selective decontamination of the digestive tract. J Antimicrob Chemother 2020; 75:3135–3143 [View Article] [PubMed]
    [Google Scholar]
  87. Lee JY, Park YK, Chung ES, Na IY, Ko KS. Evolved resistance to colistin and its loss due to genetic reversion in pseudomonas aeruginosa. Sci Rep 2016; 6:25543 [View Article] [PubMed]
    [Google Scholar]
  88. Kapel N, Caballero JD, Craig MacLean R. Localized hypermutation drives the evolution of unstable colistin resistance in pseudomonas aeruginosa. bioRxiv 2021 [View Article]
    [Google Scholar]
  89. Hodcroft EB, De Maio N, Lanfear R, MacCannell DR, Minh BQ et al. Want to track pandemic variants faster? Fix the bioinformatics bottleneck. Nature 2021; 591:30–33 [View Article] [PubMed]
    [Google Scholar]
  90. Viehweger A, Brandt C, Hölzer M. DarkQ: Continuous genomic monitoring using message queues. F1000Res 2021; 10:998: [View Article]
    [Google Scholar]
  91. Kwong JC, Mercoulia K, Tomita T, Easton M, Li HY et al. Prospective whole-genome sequencing enhances national surveillance of listeria monocytogenes. J Clin Microbiol 2016; 54:333–342 [View Article] [PubMed]
    [Google Scholar]
  92. Hadfield J, Megill C, Bell SM, Huddleston J, Potter B et al. Nextstrain: real-time tracking of pathogen evolution. Bioinformatics 2018; 34:4121–4123 [View Article] [PubMed]
    [Google Scholar]
  93. Steinig E, Duchêne S, Aglua I, Greenhill A, Ford R et al. Phylodynamic modelling of bacterial outbreaks using nanopore sequencing. bioRxiv 2021 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000741
Loading
/content/journal/mgen/10.1099/mgen.0.000741
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL

Supplementary material 3

EXCEL

Supplementary material 4

EXCEL

Supplementary material 5

EXCEL

Supplementary material 6

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error