1887

Abstract

is the agent of paracoccidioidomycosis, one of the most important systemic fungal diseases in Latin America. This initiates in lung tissue and can subsequently disseminate to other tissues. Clinical manifestations range from localized forms to disseminated disease that can progress to lethality, probably depending on the relationships among the virulence of the fungus, the immune response and the ability to interact with the surface structures and invade epithelial cells and mononuclear cells of the host. It is generally regarded as a multifocal disease, with oral lesions as the prominent feature. The aim of this study was to evaluate yeast infection in normal oral keratinocytes (NOKs). The differential expression of mRNAs and proteins was also determined when the fungus was placed in contact with the cell in order to characterize differentially expressed genes and proteins during infection. After contact with NOKs, the fungus appeared to induce alterations in the cells, which showed cellular extensions and cavitations, probably resulting from changes in the actin cytoskeleton seen at 5 and 8 h after infection. Levels of protein expression were higher after reisolation of the fungus from infected NOK culture compared with culture of the fungus in medium. The analysis identified transcripts related to 19 proteins involved in different biological processes. Transcripts were found with multiple functions including induction of cytokines, protein metabolism, alternative carbon metabolism, zinc transport and the stress response during contact with NOKs. The proteins found suggested that the yeast was in a stress situation, as indicated by the presence of RDS1. Nevertheless, the yeast seemed to be proliferating and metabolically active, as shown by the presence of a proteasome, short-chain acetylator, glucosamine-6-phosphate isomerase and ADP/ATP carrier transcripts. Additionally, metabolic pathways may have been activated in order to eliminate toxic substances from the cell as a zinc transporter was detected, which is a potential target for the development of future drugs.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.022467-0
2011-03-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/jmm/60/3/269.html?itemId=/content/journal/jmm/10.1099/jmm.0.022467-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  2. Andreotti P. F., Monteiro da Silva J. L., Bailão A. M., Soares C. M., Benard G., Soares C. P., Mendes-Giannini M. J. 2005; Isolation and partial characterization of a 30 kDa adhesin from Paracoccidioides brasiliensis . Microbes Infect 7:875–881 [CrossRef]
    [Google Scholar]
  3. Bailão A. M., Schrank A., Borges C. L., Dutra V., Walquíria Inês Molinari-Madlum E. E., Soares Felipe M. S., Soares Mendes-Giannini M. J., Martins W. S., Pereira M., Maria de Almeida Soares C. 2006; Differential gene expression by Paracoccidioides brasiliensis in host interaction conditions: representational difference analysis identifies candidate genes associated with fungal pathogenesis. Microbes Infect 8:2686–2697 [CrossRef]
    [Google Scholar]
  4. Bailão A. M., Shrank A., Borges C. L., Parente J. A., Dutra V., Felipe M. S., Fiúza R. B., Pereira M., de Almeida Soares C. M. 2007; The transcriptional profile of Paracoccidioides brasiliensis yeast cells is influenced by human plasma. FEMS Immunol Med Microbiol 51:43–57 [CrossRef]
    [Google Scholar]
  5. Bajorek M., Finley D., Glickman M. H. 2003; Proteasome disassembly and downregulation is correlated with viability during stationary phase. Curr Biol 13:1140–1144 [CrossRef]
    [Google Scholar]
  6. Barelle C. J., Priest C. L., MacCallum D. M., Gow N. A., Odds F. C., Brown A. J. 2006; Niche-specific regulation of central metabolic pathways in a fungal pathogen. Cell Microbiol 8:961–971 [CrossRef]
    [Google Scholar]
  7. Benard G., Franco M. 2007; Paracoccidioidomycosis. In Topley & Wilson's Microbiology and Microbial Infections: Medical Mycology, 10th edn. pp 541–549 Edited by Merz W. G., Hay R. J. London: Hodder Arnold;
    [Google Scholar]
  8. Benard G., Mendes-Giannini M. J. S. 2009; Paracoccidioidomycosis. In Feigin & Cherry's Textbook of Pediatric Infectious Diseases, 6th edn. pp 2762–2776 Edited by Feigin R. D., Cherry J. D., Demmler-Harrison G. J., Kaplan S. L. Philadelphia: Saunders Elsevier;
    [Google Scholar]
  9. Berlett B. S., Stadtman E. R. 1997; Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272:20313–20316 [CrossRef]
    [Google Scholar]
  10. Bignell E., Negrete-Urtasun S., Calcagno A. M., Haynes K., Arst H. N. Jr, Rogers T. 2005; The Aspergillus pH-responsive transcription factor PacC regulates virulence. Mol Microbiol 55:1072–1084
    [Google Scholar]
  11. Bird A. J., Zhao H., Luo H., Jensen L. T., Srinivasan C., Evans-Galea M., Winge D. R., Eide D. J. 2000; A dual role for zinc fingers in both DNA binding and zinc sensing by the Zap1 transcriptional activator. EMBO J 19:3704–3713 [CrossRef]
    [Google Scholar]
  12. Bochtler M., Ditzel L., Groll M., Hartmann C., Huber R. 1999; The proteasome. Annu Rev Biophys Biomol Struct 28:295–317 [CrossRef]
    [Google Scholar]
  13. Costa D. L., Dias-Melicio L. A., Acorci M. J., Bordon A. P., Tavian E. G., Peraçoli M. T., Soares A. M. 2007; Effect of interleukin-10 on the Paracoccidioides brasiliensis killing by gamma-interferon activated human neutrophils. Microbiol Immunol 51:73–80 [CrossRef]
    [Google Scholar]
  14. Coux O., Tanaka K., Goldberg A. L. 1996; Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem 65:801–847 [CrossRef]
    [Google Scholar]
  15. Cox G. M., Harrison T. S., McDade H. C., Taborda C. P., Heinrich G., Casadevall A., Perfect J. R. 2003; Superoxide dismutase influences the virulence of Cryptococcus neoformans by affecting growth within macrophages. Infect Immun 71:173–180 [CrossRef]
    [Google Scholar]
  16. da Silva M. B., Marques A. F., Nosanchuk J. D., Casadevall A., Travassos L. R., Taborda C. P. 2006; Melanin in the dimorphic fungal pathogen Paracoccidioides brasiliensis : effects on phagocytosis, intracellular resistance and drug susceptibility. Microbes Infect 8:197–205 [CrossRef]
    [Google Scholar]
  17. Demasi M., Silva G. M., Netto L. E. 2003; 20 S proteasome from Saccharomyces cerevisiae is responsive to redox modifications and is S -glutathionylated. J Biol Chem 278:679–685
    [Google Scholar]
  18. Derengowski L. S., Tavares A. H., Silva S., Procopio L. S., Felipe M. S., Silva-Pereira I. 2008; Upregulation of glyoxylate cycle genes upon Paracoccidioides brasiliensis internalization by murine macrophages and in vitro nutritional stress condition. Med Mycol 46:125–134 [CrossRef]
    [Google Scholar]
  19. Dias A. L., Brigagao M. R., Colepicolo P., Siqueira A. M., Silva E. G., Paula C. R. 2006; Superoxide dismutase in Cryptococcus neoformans varieties gattii , grubii , and neoformans . Mem Inst Oswaldo Cruz 101:107–109
    [Google Scholar]
  20. Dutra V., Nakazato L., Broetto L., Silveira Schrank I., Henning Vainstein M., Schrank A. 2004; Application of representational difference analysis to identify sequence tags expressed by Metarhizium anisopliae during the infection process of the tick Boophilus microplus cuticle. Res Microbiol 155:245–251 [CrossRef]
    [Google Scholar]
  21. Ebel F., Schwienbacher M., Beyer J., Heesemann J., Brakhage A. A., Brock M. 2006; Analysis of the regulation, expression, and localisation of the isocitrate lyase from Aspergillus fumigatus , a potential target for antifungal drug development. Fungal Genet Biol 43:476–489 [CrossRef]
    [Google Scholar]
  22. Eide D. J. 2009; Homeostatic and adaptive responses to zinc deficiency in Saccharomyces cerevisiae . J Biol Chem 284:18565–18569 [CrossRef]
    [Google Scholar]
  23. Ewing B., Hillier L., Wendi M. C., Green P. 1998; Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175–185 [CrossRef]
    [Google Scholar]
  24. Fan W., Kraus P. R., Boily M. J., Heitman J. 2005; Cryptococcus neoformans gene expression during murine macrophage infection. Eukaryot Cell 4:1420–1433 [CrossRef]
    [Google Scholar]
  25. Finlay B. B., Falkow S. 1988; Comparison of the invasion strategies used by Salmonella cholerae-suis , Shigella flexneri and Yersinia enterocolitica to enter cultured animal cells: endosome acidification is not required for bacterial invasion or intracellular replication. Biochimie 70:1089–1099 [CrossRef]
    [Google Scholar]
  26. Fradin C., De Groot P., Maccallum D., Schaller M., Klis F., Odds F. C., Hube B. 2005; Granulocytes govern the transcriptional response, morphology and proliferation of Candida albicans in human blood. Mol Microbiol 56:397–415 [CrossRef]
    [Google Scholar]
  27. Franco M. 1987; Host–parasite relationships in paracoccidioidomycoses. J Med Vet Mycol 25:5–18 [CrossRef]
    [Google Scholar]
  28. Franco M. V., Goes A. M., Koury M. C. 1997; Model of in vitro granulomatous hypersensitivity in human paracoccidioidomycosis. Mycopathologia 137:129–136 [CrossRef]
    [Google Scholar]
  29. Giulivi C., Pacifici R. E., Davies K. J. 1994; Exposure of hydrophobic moieties promotes the selective degradation of hydrogen peroxide-modified hemoglobin by the multicatalytic proteinase complex, proteasome. Arch Biochem Biophys 311:329–341 [CrossRef]
    [Google Scholar]
  30. Goulart L., Rosa., Chiapello L., Silveira C., Crestani J., Masih D., Vainstein M. H., e Silva L. K. 2010; Cryptococcus neoformans and Cryptococcus gattii genes preferentially expressed during rat macrophage infection. Med Mycol 48:932–941 [CrossRef]
    [Google Scholar]
  31. Green P. 2009 PHRAP documentation University of Washington; Seattle, WA, USA: ; http://www.phrap.org/phrap.docs/phrap.html
    [Google Scholar]
  32. Hamilton A. J., Gomez B. L. 2002; Melanins in fungal pathogens. J Med Microbiol 51:189–191
    [Google Scholar]
  33. Hanna S. A., Monteiro da Silva J. L., Mendes-Giannini M. J. S. 2000; Adherence and intracellular parasitism of Paracoccidioides brasiliensis in Vero cells. Microbes Infect 2:877–884 [CrossRef]
    [Google Scholar]
  34. Hu G., Cheng P. Y., Sham A., Perfect J. R., Kronstad J. W. 2008; Metabolic adaptation in Cryptococcus neoformans during early murine pulmonary infection. Mol Microbiol 69:1456–1475 [CrossRef]
    [Google Scholar]
  35. Huang X., Madan A. 1999; cap3: a DNA sequence assembly program. Genome Res 9:868–877 [CrossRef]
    [Google Scholar]
  36. Hubank M., Schatz D. G. 1994; Identifying differences in mRNA expression by representational difference analysis of cDNA. Nucleic Acids Res 22:5640–5648 [CrossRef]
    [Google Scholar]
  37. Hynes M. J., Murray S. L., Duncan A., Khew G. S., Davis M. A. 2006; Regulatory genes controlling fatty acid catabolism and peroxisomal functions in the filamentous fungus Aspergillus nidulans . Eukaryot Cell 5:794–805 [CrossRef]
    [Google Scholar]
  38. Kaminagakura E., Bonan P. R., Lopes M. A., Almeida O. P., Scully C. 2006; Cytokeratin expression in pseudoepitheliomatous hyperplasia of oral paracoccidioidomycosis. Med Mycol 44:399–404 [CrossRef]
    [Google Scholar]
  39. Kim M. J., Kil M., Jung J. H., Kim J. 2008; Roles of zinc-responsive transcription factor Csr1 in filamentous growth of the pathogenic yeast Candida albicans . J Microbiol Biotechnol 18:242–247
    [Google Scholar]
  40. Krappmann S., Bignell E. M., Reichard U., Rogers T., Haynes K., Braus G. H. 2004; The Aspergillus fumigatus transcriptional activator CpcA contributes significantly to the virulence of this fungal pathogen. Mol Microbiol 52:785–799 [CrossRef]
    [Google Scholar]
  41. Kraus P. R., Boily M., Giles S. S., Stajich J. E., Allen A., Cox G. M. 2004; Identification of Cryptococcus neoformans temperature-regulated genes with a genomic-DNA microarray. Eukaryot Cell 3:1249–1260 [CrossRef]
    [Google Scholar]
  42. Kumamoto C. A., Vinces M. D. 2005; Contributions of hyphae and hypha-co-regulated genes to Candida albicans virulence. Cell Microbiol 7:1546–1554 [CrossRef]
    [Google Scholar]
  43. Kurokawa C. S., Lopes C. R., Sugizaki M. F., Kuramae E. E., Franco M. F., Peracoli M. T. 2005; Virulence profile of ten Paracoccidioides brasiliensis isolates: association with morphologic and genetic patterns. Rev Inst Med Trop Sao Paulo 47:257–262 [CrossRef]
    [Google Scholar]
  44. Laporte D., Salin B., Daignan-Fornier B., Sagot I. 2008; Reversible cytoplasmic localization of the proteasome in quiescent yeast cells. J Cell Biol 181:737–745 [CrossRef]
    [Google Scholar]
  45. Lawen A. 2007; Another piece of the puzzle of apoptotic cytochrome c release. Mol Microbiol 66:553–556 [CrossRef]
    [Google Scholar]
  46. Lee A., Toffaletti D. L., Tenor J., Soderblom E. J., Thompson J. W., Moseley M. A., Price M., Perfect J. R. 2010; Survival defects of Cryptococcus neoformans mutants exposed to human cerebrospinal fluid result in attenuated virulence in an experimental model of meningitis. Infect Immun 78:4213–4225 [CrossRef]
    [Google Scholar]
  47. Lengeler K. B., Davidson R. C., D'Souza C., Harashima T., Shen W., Wang P., Pan X., Waugh M., Heitman J. 2000; Signal transduction cascades regulating fungal development and virulence. Microbiol Mol Biol Rev 64:746–785 [CrossRef]
    [Google Scholar]
  48. Lenzi H. L., Calich V. L. G., Mendes-Giannini M. J. S., Xidieh C. F., Miyaji M., Mota E. M., Machado M. P., Restrepo A. 2000; Two patterns of extracellular matrix expression in experimental paracoccidioidomycosis. Med Mycol 38:S115–S119
    [Google Scholar]
  49. Lieu H. Y., Song H. S., Yang S. N., Kim J. H., Park Y. D., Kim H. J., Kim H. Y., Park C. S. 2006; Identification of proteins affected by iron in Saccharomyces cerevisiae using proteome analysis. J Microbiol Biotechnol 16:946–951
    [Google Scholar]
  50. Livak K. J., Schmittgen T. D. 2001; Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔ C T method. Methods 25:402–408 [CrossRef]
    [Google Scholar]
  51. Lorenz M. C., Fink G. R. 2001; The glyoxylate cycle is required for fungal virulence. Nature 412:83–86 [CrossRef]
    [Google Scholar]
  52. Ludin K. M., Hilti N., Schweingruber M. E. 1995; Schizosaccharomyces pombe rds1 , an adenine-repressible gene regulated by glucose, ammonium, phosphate, carbon dioxide and temperature. Mol Gen Genet 248:439–445 [CrossRef]
    [Google Scholar]
  53. McKinney J. D., Höner zu Bentrup K., Muñoz-Elías E. J., Miczak A., Chen B., Chan W. T., Swenson D., Sacchettini J. C., Jacobs W. R. Jr, Russell D. G. 2000; Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406:735–738 [CrossRef]
    [Google Scholar]
  54. Mendes-Giannini M. J. S., Ricci L. C., Uemura M. A., Toscano E., Arns C. W. 1994; Infection and apparent invasion of Vero cells by Paracoccidioides brasiliensis . J Med Vet Mycol 32:189–197
    [Google Scholar]
  55. Mendes-Giannini M. J. S., Hanna S. A., Monteiro da Silva J. L., Andreotti P. F., Benard G., Lenzi H. L., Soares C. P. 2004; Invasion of epithelial mammalian cells by Paracoccidioides brasiliensis leads to cytoskeletal rearrangement and apoptosis of the host cell. Microbes Infect 6:882–891 [CrossRef]
    [Google Scholar]
  56. Mendes-Giannini M. J., Monteiro da Silva J. L., de Fátima da Silva J., Donofrio F. C., Miranda E. T., Andreotti P. F., Soares C. P. 2008; Interactions of Paracoccidioides brasiliensis with host cells: recent advances. Mycopathologia 165:237–248 [CrossRef]
    [Google Scholar]
  57. Moreno M. A., Ibrahim-Granet O., Vicentefranqueira R., Amich J., Ave P., Leal F., Latgé J. P., Calera J. A. 2007; The regulation of zinc homeostasis by the ZafA transcriptional activator is essential for Aspergillus fumigatus virulence. Mol Microbiol 64:1182–1197 [CrossRef]
    [Google Scholar]
  58. Morgan-Kiss R. M., Cronan J. E. 2004; The Escherichia coli fadK ( ydiD ) gene encodes an anerobically regulated short chain acyl-CoA synthetase. J Biol Chem 279:37324–37333 [CrossRef]
    [Google Scholar]
  59. Moscardi-Bacchi M., Soares A., Mendes R., Marques S., Franco M. 1989; In situ localization of T lymphocyte subsets in human paracoccidioidomycosis. J Med Vet Mycol 27:149–158 [CrossRef]
    [Google Scholar]
  60. Muñoz-Elías E. J., McKinney J. D. 2005; Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence. Nat Med 11:638–644 [CrossRef]
    [Google Scholar]
  61. Narasipura S. D., Ault J. G., Behr M. J., Chaturvedi V., Chaturvedi S. 2003; Characterization of Cu,Zn superoxide dismutase ( SOD1 ) gene knockout mutant of Cryptococcus neoformans var. gattii : role in biology and virulence. Mol Microbiol 47:1681–1694 [CrossRef]
    [Google Scholar]
  62. Narasipura S. D., Chaturvedi V., Chaturvedi S. 2005; Characterization of Cryptococcus neoformans variety gattii SOD2 reveals distinct roles of the two superoxide dismutases in fungal biology and virulence. Mol Microbiol 55:1782–1800 [CrossRef]
    [Google Scholar]
  63. Olivas I., Royuela M., Romero B., Monteiro M. C., Minguez J. M., Laborda F., De Lucas J. R. 2008; Ability to grow on lipids accounts for the fully virulent phenotype in neutropenic mice of Aspergillus fumigatus null mutants in the key glyoxylate cycle enzymes. Fungal Genet Biol 45:45–60 [CrossRef]
    [Google Scholar]
  64. Pereira C., Camougrand N., Manon S., Sousa M. J., Côrte-Real M. 2007; ADP/ATP carrier is required for mitochondrial outer membrane permeabilization and cytochrome c release in yeast apoptosis. Mol Microbiol 66:571–582 [CrossRef]
    [Google Scholar]
  65. Qazi S. N., Counil E., Morrissey J., Rees C. E., Cockayne A., Winzer K., Chan W. C., Williams P., Hill P. J. 2001; agr expression precedes escape of internalized Staphylococcus aureus from the host endosome. Infect Immun 69:7074–7082 [CrossRef]
    [Google Scholar]
  66. Radisky D., Kaplan J. 1999; Regulation of transition metal transport across the yeast plasma membrane. J Biol Chem 274:4481–4484 [CrossRef]
    [Google Scholar]
  67. Ramírez M. A., Lorenz M. C. 2009; The transcription factor homolog CTF1 regulates β -oxidation in Candida albicans . Eukaryot Cell 8:1604–1614 [CrossRef]
    [Google Scholar]
  68. Ratledge C., Dover L. G. 2000; Iron metabolism in pathogenic bacteria. Annu Rev Microbiol 54:881–941 [CrossRef]
    [Google Scholar]
  69. Rosa., Staats C. C., Goulart L. S., Morello L. G., Pelegrinelli Fungaro M. H., Schrank A., Vainstein M. H., e Silva L. K. 2008; Identification of novel temperature-regulated genes in the human pathogen Cryptococcus neoformans using representational difference analysis. Res Microbiol 159:221–229 [CrossRef]
    [Google Scholar]
  70. Rosenshine I., Duronio V., Finlay B. B. 1992; Tyrosine protein kinase inhibitors block invasin-promoted bacterial uptake by epithelial cells. Infect Immun 60:2211–2217
    [Google Scholar]
  71. Rude T. H., Toffaletti D. L., Cox G. M., Perfect J. R. 2002; Relationship of the glyoxylate pathway to the pathogenesis of Cryptococcus neoformans . Infect Immun 70:5684–5694 [CrossRef]
    [Google Scholar]
  72. Rutherford J. C., Bird A. J. 2004; Metal-responsive transcription factors that regulate iron, zinc, and copper homeostasis in eukaryotic cells. Eukaryot Cell 3:1–13 [CrossRef]
    [Google Scholar]
  73. San-Blas G., Niño-Vega G., Iturriaga T. 2002; Paracoccidioides brasiliensis and paracoccidioidomycosis: molecular approaches to morphogenesis, diagnosis, epidemiology, taxonomy and genetics. Med Mycol 40:225–242 [CrossRef]
    [Google Scholar]
  74. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain termination inhibitors. Proc Natl Acad Sci U S A 74:5463–5467 [CrossRef]
    [Google Scholar]
  75. Scully C., de Almeida O. P. 1992; Orofacial manifestations of the systemic mycoses. J Oral Pathol Med 21:289–294 [CrossRef]
    [Google Scholar]
  76. Sengupta M., Datta A. 2003; Two membrane proteins located in the Nag regulon of Candida albicans confer multidrug resistance. Biochem Biophys Res Commun 301:1099–1108 [CrossRef]
    [Google Scholar]
  77. Silva G. M., Netto L. E., Discola K. F., Piassa-Filho G. M., Pimenta D. C., Bárcena J. A., Demasi M. 2008; Role of glutaredoxin 2 and cytosolic thioredoxins in cysteinyl-based redox modification of the 20S proteasome. FEBS J 275:2942–2955 [CrossRef]
    [Google Scholar]
  78. Singh B., Datta A. 1979; Regulation of N -acetylglucosamine uptake in yeast. Biochim Biophys Acta 557:248–258 [CrossRef]
    [Google Scholar]
  79. Singh P., Ghosh S., Datta A. 2001; Attenuation of virulence and changes in morphology in Candida albicans by disruption of the N -acetylglucosamine catabolic pathway. Infect Immun 69:7898–7903 [CrossRef]
    [Google Scholar]
  80. Swanson J. A., Baer S. C. 1995; Phagocytosis by zippers and triggers. Trends Cell Biol 5:89–93 [CrossRef]
    [Google Scholar]
  81. Taborda C. P., Silva M. B., Nosanchuk J. D., Travassos L. R. 2008; Melanin as a virulence factor of Paracoccidioides brasiliensis and other dimorphic pathogenic fungi: a minireview. Mycopathologia 165:331–339 [CrossRef]
    [Google Scholar]
  82. Traba J., Satrústegui J., Del Arco A. 2009; Transport of adenine nucleotides in the mitochondria of Saccharomyces cerevisiae : interactions between the ADP/ATP carriers and the ATP-Mg/Pi carrier. Mitochondrion 9:79–85 [CrossRef]
    [Google Scholar]
  83. Tuder R. M., el Ibrahim R., Godoy C. E., De Brito T. 1985; Pathology of the human pulmonary paracoccidioidomycosis. Mycopathologia 92:179–188 [CrossRef]
    [Google Scholar]
  84. Ullrich O., Reinheckel T., Sitte N., Hass R., Grune T., Davies K. J. 1999; Poly-ADP ribose polymerase activates nuclear proteasome to degrade oxidatively damaged histones. Proc Natl Acad Sci U S A 96:6223–6228 [CrossRef]
    [Google Scholar]
  85. Vázquez-Boland J. A., Kuhn M., Berche P., Chakraborty T., Domínguez-Bernal G., Goebel W., González-Zorn B., Wehland J., Kreft J. 2001; Listeria pathogenesis and molecular virulence determinants. Clin Microbiol Rev 14:584–640 [CrossRef]
    [Google Scholar]
  86. Zhao H., Eide D. J. 1997; Zap1p, a metalloregulatory protein involved in zinc-responsive transcriptional regulation in Saccharomyces cerevisiae . Mol Cell Biol 17:5044–5052
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.022467-0
Loading
/content/journal/jmm/10.1099/jmm.0.022467-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error