1887

Abstract

A non-spore-forming, motile, Gram-stain-negative, short rod-shaped strain, designated HN4, was isolated from a paddy soil sample collected in Shanghai, China. A comparative analysis o-f 16S rRNA gene sequences showed that strain HN4 fell within the genus Falsochrobactrum , forming a clear cluster with the type strain of Falsochrobactrum ovis , with which it exhibited a 16S rRNA gene sequence similarity value of 98.2 %. Strain HN4 grew optimally at pH 7.0, 30–35 °C and in the presence of 1 % (w/v) NaCl. It was positive for oxidase activity. Chemotaxonomic analysis showed that strain HN4 contained ubiquinone-10 as the predominant respiratory quinone and possessed summed feature 8(C18 : 1ω7c and/or C18 : 1ω6c) and C19 : 0cyclo ω8c as predominant fatty acids. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and phosphatidylcholine. The DNA G+C content was 56.9 mol%. Strain HN4 exhibited a DNA–DNA relatedness level of 18±1 % with Falsochrobactrum ovis CCM 8460. Based on the data obtained in this study, strain HN4 represents a novel species of the genus Falsochrobactrum , for which the name Falsochrobactrum shanghaiense sp. nov. is proposed. The type strain is HN4 (=JCM 32785=CCTCC AB 2018063).

Keyword(s): Falsochrobactrum and new taxa
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003236
2019-01-17
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/3/778.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003236&mimeType=html&fmt=ahah

References

  1. Kämpfer P, Glaeser S, Busse HJ, Eisenberg T, Scholz H. Falsochrobactrum ovis gen. nov., sp. nov., isolated from a sheep. Int J Syst Evol Microbiol 2013; 63:3841–3847 [View Article][PubMed]
    [Google Scholar]
  2. Holmes B, Popoff M, Kiredjian M, Kersters K. Ochrobactrum anthropi gen. nov., sp. nov. from Human Clinical Specimens and Previously Known as Group Vd. Int J Syst Bacteriol 1988; 38:406–416 [View Article]
    [Google Scholar]
  3. Li L, Li YQ, Jiang Z, Gao R, Nimaichand S et al. Ochrobactrum endophyticum sp. nov., isolated from roots of Glycyrrhiza uralensis. Arch Microbiol 2016; 198:171–179 [View Article][PubMed]
    [Google Scholar]
  4. Woo SG, Ten LN, Park J, Lee M. Ochrobactrum daejeonense sp. nov., a nitrate-reducing bacterium isolated from sludge of a leachate treatment plant. Int J Syst Evol Microbiol 2011; 61:2690–2696 [View Article][PubMed]
    [Google Scholar]
  5. Kämpfer P, Huber B, Busse HJ, Scholz HC, Tomaso H et al. Ochrobactrum pecoris sp. nov., isolated from farm animals. Int J Syst Evol Microbiol 2011; 61:2278–2283 [View Article][PubMed]
    [Google Scholar]
  6. Huber B, Scholz HC, Kämpfer P, Falsen E, Langer S et al. Ochrobactrum pituitosum sp. nov., isolated from an industrial environment. Int J Syst Evol Microbiol 2010; 60:321–326 [View Article][PubMed]
    [Google Scholar]
  7. Imran A, Hafeez FY, Frühling A, Schumann P, Malik KA et al. Ochrobactrum ciceri sp. nov., isolated from nodules of Cicer arietinum. Int J Syst Evol Microbiol 2010; 60:1548–1553 [View Article][PubMed]
    [Google Scholar]
  8. Kämpfer P, Sessitsch A, Schloter M, Huber B, Busse HJ et al. Ochrobactrum rhizosphaerae sp. nov. and Ochrobactrum thiophenivorans sp. nov., isolated from the environment. Int J Syst Evol Microbiol 2008; 58:1426–1431 [View Article][PubMed]
    [Google Scholar]
  9. Kämpfer P, Scholz HC, Huber B, Falsen E, Busse HJ. Ochrobactrum haematophilum sp. nov. and Ochrobactrum pseudogrignonense sp. nov., isolated from human clinical specimens. Int J Syst Evol Microbiol 2007; 57:2513–2518 [View Article][PubMed]
    [Google Scholar]
  10. Tripathi AK, Verma SC, Chowdhury SP, Lebuhn M, Gattinger A et al. Ochrobactrum oryzae sp. nov., an endophytic bacterial species isolated from deep-water rice in India. Int J Syst Evol Microbiol 2006; 56:1677–1680 [View Article][PubMed]
    [Google Scholar]
  11. Zurdo-Piñeiro JL, Rivas R, Trujillo ME, Vizcaíno N, Carrasco JA et al. Ochrobactrum cytisi sp. nov., isolated from nodules of Cytisus scoparius in Spain. Int J Syst Evol Microbiol 2007; 57:784–788 [View Article][PubMed]
    [Google Scholar]
  12. Claus D. A standardized Gram staining procedure. World J Microbiol Biotechnol 1992; 8:451–452 [View Article][PubMed]
    [Google Scholar]
  13. Bernardet JF, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [View Article][PubMed]
    [Google Scholar]
  14. Ohta H, Hattori T. Agromonas oligotrophica gen. nov., sp. nov., a nitrogen-fixing oligotrophic bacterium. Antonie van Leeuwenhoek 1983; 49:429–446[PubMed]
    [Google Scholar]
  15. Lane DJ. 16S/23S rRNA Sequencing. Nucleic Acid Techniques in Bacterial Systematics 1991
    [Google Scholar]
  16. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  17. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  18. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425
    [Google Scholar]
  19. Walter MF. Toward defining the course of evolution:minimum change for a specific tree topology. Syst Zool 1971; 20:406–416
    [Google Scholar]
  20. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  21. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  22. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  23. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39:224–229 [View Article]
    [Google Scholar]
  24. Sasser M. MIDI technical note 101. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI, Newark 1990
    [Google Scholar]
  25. Komagata K, Susuki K. Lipid and cell-wall systematics in bacterial systematics. Method Microbiol 1987; 19:161–207
    [Google Scholar]
  26. Minnikin DE, Collins MD, Goodfellow M. Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 1979; 47:87–95 [View Article]
    [Google Scholar]
  27. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  28. Wayne LG. International Committee on Systematic Bacteriology: announcement of the report of the ad hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Zentralbl Bakteriol Mikrobiol Hyg A 1988; 268:433–434[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003236
Loading
/content/journal/ijsem/10.1099/ijsem.0.003236
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error