1887

Abstract

The taxonomic position of the coral pathogen strain CBMAI 722 was determined on the basis of molecular and phenotypic data. We clearly show that the novel isolate CBMAI 722 is a member of the family , with as the nearest neighbour (95 % 16S rRNA gene sequence similarity). CBMAI 722 can be differentiated from its nearest neighbour on the basis of phenotypic and chemotaxonomic features, including the utilization of cellobiose and -arginine, the production of alginase and amylase, but not oxidase, and the presence of the fatty acids 12 : 0 3-OH and 14 : 0, but not 10 : 0 or 15 : 0. The DNA G+C content of CBMAI 722 is 39·3 mol%. We conclude that this strain represents a novel species for which we propose the name sp. nov., with the type strain CBMAI 722 (=LMG 22536). This is the first report of the involvement of a member of the family in coral white plague-like disease.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63800-0
2006-02-01
2024-03-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/2/365.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63800-0&mimeType=html&fmt=ahah

References

  1. Acar J. F., Goldstein F. W. 1996; Disc susceptibility test. In Antibiotics in Laboratory Medicine , 4th edn. pp  1–51 Edited by Lorian V. Baltimore: Williams & Wilkins;
    [Google Scholar]
  2. Barash Y., Sulam R., Loya Y., Rosenberg E. 2005; Bacterial strain BA-3 and a filterable factor cause a white plague-like disease in corals from the Eilat coral reef. Aquat Microb Ecol 40:183–189 [CrossRef]
    [Google Scholar]
  3. Baumann P., Baumann R. H., Schubert W. 1984; Vibrionaceae . In Bergey's Manual of Systematic Bacteriology vol. 1 pp  516–550 Edited by Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  4. Breitbart M., Bhagooli R., Griffin S., Johnston I., Rohwer F. 2005; Microbial communities associated with skeletal tumors on Porites compressa . FEMS Microbiol Lett 243:431–436 [CrossRef]
    [Google Scholar]
  5. Hidaka T., Sakai M. 1968; Comparative observation of inorganic salt requirement of the marine and terrestrial bacteria. Bull Misaki Mar Biol Inst Kyoto Univ 12:125–149
    [Google Scholar]
  6. Hoegh-Guldberg O. 2004; Coral reefs and projections of future change. In Coral Health and Disease pp  463–484 Edited by Rosenberg E., Loya Y. Berlin: Springer;
    [Google Scholar]
  7. Hughes T. P., Baird A. H., Bellwood D. R. 14 other authors 2003; Climate change, human impacts, and the resilience of coral reefs. Science 301:929–933 [CrossRef]
    [Google Scholar]
  8. Huys G., Vancanneyt M., Coopman R., Janssen P., Falsen E., Altwegg M., Kersters K. 1994; Cellular fatty-acid composition as a chemotaxonomic marker for the differentiation of phenospecies and hybridization groups in the genus Aeromonas . Int J Syst Bacteriol 44:651–658 [CrossRef]
    [Google Scholar]
  9. Ivanova E. P., Flavier S., Christen R. 2004; Phylogenetic relationships among marine Alteromonas -like proteobacteria: emended description of the family Alteromonadaceae and proposal of Pseudoalteromonadaceae fam.nov., Colwelliaceae fam. nov., Shewanellaceae fam. nov., Moritellaceae fam. nov., Ferrimonadaceae fam. nov., Idiomarinaceae fam. nov. and Psychromonadaceae fam. nov. Int J Syst Evol Microbiol 54:1773–1788 [CrossRef]
    [Google Scholar]
  10. Knowlton N., Rohwer F. 2003; Multispecies microbial mutualisms on coral reefs: the host as a habitat. Am Nat 162:S51–S62 [CrossRef]
    [Google Scholar]
  11. Leifson E. 1963; Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 82:1183–1184
    [Google Scholar]
  12. Macian M. C., Ludwig W., Schleifer K. H., Garay E., Pujalte M. J. 2001; Thalassomonas viridans gen. nov., sp. nov., a novel marine γ -proteobacterium. Int J Syst Evol Microbiol 51:1283–1289
    [Google Scholar]
  13. Oppenheimer C. H., ZoBell C. E. 1952; The growth and viability of sixty-three species of marine bacteria as influenced by hydrostatic pressure. J Mar Res 11:10–18
    [Google Scholar]
  14. Rosenberg E., Ben-Haim Y. 2002; Microbial diseases of corals and global warming. Environ Microbiol 4:318–326 [CrossRef]
    [Google Scholar]
  15. Rosenberg E., Loya Y. 2004 Coral Health and Disease Berlin: Springer;
    [Google Scholar]
  16. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  17. Sawabe T., Oda Y., Shiomi Y., Ezura Y. 1995; Alginate degradation by bacteria isolated from the gut of sea urchins and abalones. Microb Ecol 30:193–202
    [Google Scholar]
  18. Sutherland K. P., Porter J. W., Torres C. 2004; Disease and immunity in Caribbean and Indo Pacific zooxanthellate corals. Mar Ecol Prog Ser 266:273–302 [CrossRef]
    [Google Scholar]
  19. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid-chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  20. Thompson F. L., Hoste B., Vandemeulebroecke K., Swings J. 2001; Genomic diversity amongst Vibrio isolates from different sources determined by fluorescent amplified fragment length polymorphism. Syst Appl Microbiol 24:520–538 [CrossRef]
    [Google Scholar]
  21. Yi H., Bae K. S., Chun J. 2004; Thalassomonas ganghwensis sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 54:377–380 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63800-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63800-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error