1887

Abstract

Summary: PAO1 possesses two distinct lipopolysaccharide (LPS) O-polysaccharide species, A- and B-band LPS, the relative expression of which appears to be under environmental control. In an attempt to identify the influence these LPS types have on surface characteristics and adhesion, we examined the surface hydrophobicity and surface charge of PAO1 (O5 serotype) and its isogenic LPS derivatives which possessed AB, AB and AB LPS. The surface characteristics of the strains affected their ability to adhere to hydrophilic (glass) and hydrophobic (polystyrene) surfaces. Cells possessing only A-band LPS demonstrated the highest surface hydrophobicity, followed by the strain lacking both A- and B-band LPS. The presence of B-band LPS resulted in a more hydrophilic surface. Strains lacking B-band LPS (AB and AB) had more electronegative surfaces than those possessing B-band LPS (AB and AB), with cells lacking both A- and B-band LPS showing the highest surface electronegativity. These data suggest that the main surface-charge-determining groups reside in the core region of the LPS molecule. Cells with the lowest surface hydrophobicity and lowest surface charge (AB, AB) adhered to glass the most efficiently, implying a role for electrostatic interaction, whereas adhesion to polystyrene mirrored the relative hydrophobicities of the strains (AB>AB>AB>AB). It is postulated that phenotypic variation in the relative expression of A- and B-band LPS may be a mechanism by which can alter its overall surface characteristics in such a way as to influence adhesion and favour survival.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-2-299
1996-02-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/2/mic-142-2-299.html?itemId=/content/journal/micro/10.1099/13500872-142-2-299&mimeType=html&fmt=ahah

References

  1. Absolom D. R. 1988; The role of hydrophobicity in infection: bacterial adhesion and phagocytic ingestion. Can J Microbiol 34:287–298
    [Google Scholar]
  2. Anwar H. M., Dasgupta M. K., Costerton J. W. 1990; Testing and susceptibility of bacteria in biofilms to antimicrobial agents. Antimicrob Agents Chemother 34:2043–2046
    [Google Scholar]
  3. Arsenault T. L., Hughes D. W., Maclean D. B., Szarek W. A., Kropinski A. M. B., Lam J. S. 1991; Structure studies on the polysaccharide portion of ‘A band’ lipopolysaccharide from a mutant (AK1401) of Pseudomonas aeruginosa strain PAOl. Can J Chem 69:1273–1280
    [Google Scholar]
  4. Berry D., Kropinski A. M. 1986; Effect of lipopolysaccharide mutations and temperature on plasmid transformation efficiency in Pseudomonas aeruginosa. Can J Microbiol 32:436–438
    [Google Scholar]
  5. Brause B. D. 1989; Infected orthopedic prostheses. Infection Associated with Indwelling Medical Devices. Edited by Bisno A. L., Waldvogel F. A. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  6. Busscher H. J., Weerkamp A. H., van der Mei H. L., van Pelt A. J. W., DeJong H. P., Arends J. 1984; Measurement of surface-free energy of bacterial cell surfaces and its relevance for adhesion. Appl Environ Microbiol 48:980–983
    [Google Scholar]
  7. Christensen B. E., Characklis W. G. 1990; Physical and chemical properties of biofilms. Biofilms93–130 Edited by Characklis W. G., Marshall K. C. New York: John Wiley;
    [Google Scholar]
  8. Costerton J. W., Cheng K. J., Geesey G. G., Ladd P. I., Nickel J. C., Dasgupta M., Marrie T. J. 1987; Bacterial biofilms in nature and disease. Annu Rev Microbiol 41:435–464
    [Google Scholar]
  9. Dagostino L., Goodman A. E., Marshall K. C. 1991; Physiological responses induced in bacteria adhering to surfaces. Biofouling 4:113–119
    [Google Scholar]
  10. Davies D. G., Geesey G. G. 1995; Regulation of the alginate biosynthesis gene algC in Pseudomonas aeruginosa during biofilm development in continuous culture. Appl Environ Microbiol 61:860–867
    [Google Scholar]
  11. Davies D. G., Chakrabarty A. M., Geesey G. G. 1993; Exopoly-saccharide production in biofilms: substratum activation of alginate gene expression by Pseudomonas aeruginosa. Appl Environ Microbiol 59:1181–1186
    [Google Scholar]
  12. Dazzo F. B. 1984; Bacterial adhesion to plant root surfaces. Microbial Adhesion and Aggregation Edited by Marshall K. C. Berlin: Springer-Verlag;
    [Google Scholar]
  13. Fletcher M. 1992; Bacterial metabolism in biofilms. Biofilms: Science and Technology. Edited by Melo C. F., Bott T. R., Fletcher M., Capdeville B. Dordrecht: Kluwer Academic Publishers;
    [Google Scholar]
  14. Gilbert P., Collier P. J., Brown M. R. W. 1990; Influence of growth rate and susceptibility to antimicrobial agents: biofilms, cell cycle, dormancy, and stringent response. Antimicrob Agents Chemother 1A:1865–1868
    [Google Scholar]
  15. Gilbert P., Evans D. J., Evans E., Duguid I. G., Brown M. R. W. 1991; Surface characteristics and the adhesion of Escherichia coli and Staphylococcus epidermidis. J Appl Bacteriol 71: 12-11
    [Google Scholar]
  16. Gilbert P., Evans D. J. E., Brown M. R. W. 1993; Formation and dispersal of bacterial biofilms in vivo and in situ. J Appl Bacteriol Supp 74:67S–78S
    [Google Scholar]
  17. Giwercman B., Jensen T. E., Hoiby N., Kharazmi A., Costerton J. W. 1991; Induction of ^-lactamase production in Pseudomonas aeruginosa biofilm. Antimicrob Agents Chemother 35:1008–1010
    [Google Scholar]
  18. Gordon A. S., Millero F. J. 1984; Electrolyte effects on attachment of an estuarine bacterium. Appl Environ Microbiol 47:495–499
    [Google Scholar]
  19. Hancock R. E. W., Crey A. M. 1979; Outer membrane of Pseudomonas aeruginosa: heat and 2-mercaptoethanol-modifiable proteins. J Bacteriol 140:902–910
    [Google Scholar]
  20. Hancock R. E. W., Mutharia L M., Chan L, Darveau R. P., Speert D. P., Pier G. B. 1983; Pseudomonas aeruginosa isolates from patients with cystic fibrosis: a class of serum-sensitive, non-typable strains deficient in lipopolysaccharide O side chains. Infect Immun 42:170–177
    [Google Scholar]
  21. Hermansson M., Kjelleberg S., Korhonen T. K., Stenstrom T. A. 1982; Hydrophobic and electrostatic characterization of surface structures of bacteria and its relationship to adhesion to an air-water interface. Arch Microbiol 131:308–312
    [Google Scholar]
  22. Herson D. S., McGonigle B., Payer M. A., Baker K. H. 1987; Attachment as a factor in the protection of Enterobacter cloacae from chlorination. Appl Environ Microbiol 53:1178–1180
    [Google Scholar]
  23. Hitchcock P., Brown T. M. 1983; Microheterogeneity among Salmonella lipopolysaccharide chemotypes in silver stained poly-acrylamide. J Bacteriol 154:269–277
    [Google Scholar]
  24. James D. W., Suslow T. V., Steinback K. E. 1985; Relationship between rapid firm adhesion and long-term colonization of roots by bacteria. Appl Environ Microbiol 50:392–397
    [Google Scholar]
  25. Kadurugamuwa J. L., Lam J. S., Beveridge T. J. 1993; Interaction of gentamicin with the A band and B band lipopoly-saccharides of Pseudomonas aeruginosa and its possible lethal effect. Antimicrob Agents Chemother 37:715–721
    [Google Scholar]
  26. Kihlstrom E., Magnusson K. E. 1980; Association with HeLa cells of LPS mutants of Salmonella typhimurium and Salmonella minnesota in relation to their physico-chemical surface properties. Cell Biophys 2:177–189
    [Google Scholar]
  27. Kinniment S. L., Wimpenny J. W. T. 1992; Measurement of the distribution of adenylate concentrations and adenylate charge across Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 58:1629–1635
    [Google Scholar]
  28. Knirel Y. A., Vinogradov E. V., Kocharova N. A., Paramonov N. A., Kochetkov N. K., Dmitriev B. A., Stanislavsky E. S., Lanyi B. 1988; The structure of O-specific polysaccharide and serological classification of Pseudomonas aeruginosa. Acta Microbiol Hung 35:3–24
    [Google Scholar]
  29. Lam J. S., Graham L. L., Lightfoot J., Dasgupta T., Beveridge T. J. 1992; Ultrastructural examination of the lipopolysaccharides of Pseudomonas aeruginosa strains and their isogenic rough mutants by freeze substitution. J Bacteriol 174:7159–7167
    [Google Scholar]
  30. Lam M. Y. C., McGroarty E. J., Kropinski A. M., MacDonald L. A., Pedersen S. S., Hoiby N., Lam J. S. 1989; Occurrence of a common lipopolysaccharide antigen in standard and clinical strains of Pseudomonas aeruginosa. J Clin Microbiol 27:962–967
    [Google Scholar]
  31. Lightfoot J., Lam J. S. 1991; Molecular cloning of genes involved with expression of A-band lipopolysaccharide, an antigenically conserved form, in Pseudomonas aeruginosa. J Bacteriol 173:5624–5630
    [Google Scholar]
  32. Lock M. A. 1993; Attached microbial communities in rivers. Aquatic Microbiology113–138 Edited by Ford T. E. Boston: Blackwell;
    [Google Scholar]
  33. Lugtenberg B., Meijers J., Peters R., van der Hoek P., van Alphen L. 1975; Electrophoretic resolution of the ‘major outer membrane protein’ of Escherichia coli K12 into four major bands. FEBS Lett 58:254–258
    [Google Scholar]
  34. Magnusson K. E., Johansson G. 1977; Probing the surface of Salmonella typhimurium and Salmonella minnesota SR and R bacteria by aqueous biphasic partitioning in systems containing hydrophobic and charged polymers. FEMS Microbiol Lett 2:225–228
    [Google Scholar]
  35. Marshall K. C., Stout R., Mitchell R. 1971; Selective sorption of bacteria from seawater. Can J Microbiol 17:1413–1416
    [Google Scholar]
  36. Miller M. J., Ahearn D. G. 1987; Adherence of Pseudomonas aeruginosa to hydrophilic contact lenses and other substrata. J Clin Microbiol 25:1392–1397
    [Google Scholar]
  37. Nickel J. C., Heaton J., Morales A., Costerton J. W. 1985; Tobramycin resistance of Pseudomonas aeruginosa cells growing as a biofilm on urinary catheter material. Antimicrob Agents Chemother 27:619–624
    [Google Scholar]
  38. Ormerod L. D., Smith R. E. 1986; Contact lens-associated microbial keratitis. Arch Ophthalmol 104:79–83
    [Google Scholar]
  39. Palomar J., Leranoz A. M., Vinas M. 1995; Serratia marcescens adherence: the effect of O-antigen presence. Microbios 81:107–113
    [Google Scholar]
  40. Paul J. H., Jeffrey W. H. 1985; Evidence for separate adhesion mechanisms for hydrophilic and hydrophobic surfaces in Vibrio proteolytica. Appl Environ Microbiol 50:431–437
    [Google Scholar]
  41. Pendersen K. 1981; Electrostatic interaction chromatography, a method for assaying the relative surface charge of bacteria. FEMS Microbiol Lett 12:365–367
    [Google Scholar]
  42. Peterson A. A., Hancock R. E. W., McGroarty E. J. 1985; Binding of polycationic antibiotics and polyamines to lipopoly-saccharides of Pseudomonas aeruginosa. J Bacteriol 164:1256–1261
    [Google Scholar]
  43. Rainey P. B. 1991; Phenotypic variation of Pseudomonasputida and Pseudomonas tolaasii affects attachment to Agaricus bisporus mycelium. J Gen Microbiol 137:2769–2779
    [Google Scholar]
  44. Rivera M., McGroarty E. J. 1989; Analysis of a common antigen lipopolysaccharide from Pseudomonas aeruginosa. J Bacteriol 171:2244–2248
    [Google Scholar]
  45. Rivera M., Bryan L. E., Hancock R. E. W., McGroarty E. J. 1988; Heterogeneity of lipopolysaccharides from Pseudomonas aeruginosa: analysis of lipopolysaccharide chain length. J Bacteriol 170:512–521
    [Google Scholar]
  46. Rutter P. R., Vincent B. 1980; The adhesion of microorganisms to surfaces: physicochemical aspects. Microbial Adhesion to Surfaces. Edited by Berkeley C. W., Lynch J. M., Melling J., Rutter P. R., Vincent B. Chichester: Ellis Horwood;
    [Google Scholar]
  47. Smyth C. J., Jonsson P., Olsson E., Soderlind O., Rosengren J., Hjerten S., Wadstrom T. 1978; Differences in hydrophobic surface characteristics of porcine enteropathogenic Escherichia coli with and without K88 antigen as revealed by hydrophobic interaction chromatography. Infect Immun 22:462–472
    [Google Scholar]
  48. Stenstrom T. A. 1989; Bacterial hydrophobicity, an overall parameter for the measurement of adhesion potential to soil particles. Appl Environ Microbiol 55:142–147
    [Google Scholar]
  49. Svanborg-Eden C, Hagberg L., Hull R., Hull S., Magnusson K. E., Ohman L. 1987; Bacterial virulence versus host resistance in the urinary tract of mice. Infect Immun 55:1224–1232
    [Google Scholar]
  50. Tsai C., Frasch C. E. 1982; A sensitive silver stain for detecting LPS in polyacrylamide gels. Anal Biochem 119:115–119
    [Google Scholar]
  51. Van Haeke E., Remon J. P., Moors M., Raes F., DeRudder D., van Peteghem A. 1990; Kinetics of Pseudomonas aeruginosa adhesion to 304 and 316-L stainless steel: role of cell surface hydrophobicity. Appl Environ Microbiol 56:788–795
    [Google Scholar]
  52. Van Loosdrecht M. C. M., Lyklema J., Norde W., Schraa G., Zehnder A. J. B. 1987a; The role of bacterial cell wall hydrophobicity in adhesion. Appl Environ Microbiol 53:1893–1897
    [Google Scholar]
  53. Van Loosdrecht M. C. M., Lyklema J., Norde W., Schraa G., Zehnder A. J. B. 1987b; Electrophoretic mobility and hydrophobicity as a measure to predict the initial steps in bacterial adhesion. Appl Environ Microbiol 53:1898–1901
    [Google Scholar]
  54. Van Loosdrecht M. C. M., Lyklema J., Norde W., Zehnder A. J. B. 1990; Influence of interfaces on microbial activity. Microbiol Rev 54:75–87
    [Google Scholar]
  55. Walan A., Kihlstrom E. 1988; Surface charge and hydrophobicity of Campylobacter jejuni strains in relation to adhesion to epithelial HT-29 cells. APMIS 96:1089–1096
    [Google Scholar]
  56. Warren J. W. 1987; Catheter associated urinary tract infections. Infect Dis Clin North Am 1:823–854
    [Google Scholar]
  57. Wilkinson S. G. 1983; Composition and structure of lipopoly-saccharides from Pseudomonas aeruginosa. Rev Infect Dis 5:S941–S949
    [Google Scholar]
  58. Williams P., Lambert P. A., Haigh C. G., Brown M. R. W. 1986; The influence of the O and K antigens of Klebsiella aerogenes on surface hydrophobicity and susceptibility to phagocytosis and antimicrobial agents. J Med Microbiol 21:125–132
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-2-299
Loading
/content/journal/micro/10.1099/13500872-142-2-299
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error