1887

Abstract

Human papillomavirus (HPV) type 16 expresses a variety of alternatively spliced polycistronic mRNAs encoding the E2 transcription-regulatory protein. These mRNAs initiate at the p97 promoter and contain the 880/2708 (a-type), 880/2581 (a′-type) and 226/2708 (d-type) splice sites upstream from the E2 open reading frame (ORF). Recent studies investigating the translational capacities of partial cDNAs representing three of these mRNAs indicated their abilities to function in E2 protein translation, although at different efficiencies. In the present study, the transcription-regulatory activities of the E2 cDNAs towards the virus long control region (LCR) have been examined. LCR regulation was evaluated in transient transfection assays by using the chloramphenicol acetyltransferase reporter gene linked to the HPV-16 LCR. Transfections were carried out into fibroblast (Cf2Th) and epithelial (C33A) cell lines. It is shown that all three E2 cDNAs transrepressed the virus LCR in a dose-dependent manner. Transrepression was mainly dependent on the function of the E2 ORF and was abolished or markedly reduced by premature termination or truncation of the E2 ORF. Transrepression activities exhibited by the various E2 cDNAs correlated with the previously defined efficiencies of E2 protein translation from the respective templates. The truncated E2 cDNAs exhibited variable low regulatory activities that correlated with the activities of the 5′ ORFs contained in each cDNA. The E6I and E1C ORFs transactivated the virus LCR whereas the E6IV cDNA transrepressed LCR activity. Thus, the 5′ ORFs contribute in different manners to the overall activities of the polycistronic cDNAs.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-80-9-2461
1999-09-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/80/9/0802461a.html?itemId=/content/journal/jgv/10.1099/0022-1317-80-9-2461&mimeType=html&fmt=ahah

References

  1. Alloul N., Sherman L. 1999; The E2 protein of human papillomavirus type 16 is translated from a variety of differentially spliced polycistronic mRNAs. Journal of General Virology 80:29–37
    [Google Scholar]
  2. Armstrong D. J., Roman A. 1997; The relative ability of human papillomavirus type 6 and human papillomavirus type 16 E7 proteins to transactivate E2F-responsive elements is promoter- and cell-dependent. Virology 239:238–246
    [Google Scholar]
  3. Bernard B. A., Bailly C., Lenoir M. C., Darmon M., Thierry F., Yaniv M. 1989; The human papillomavirus type 18 (HPV18) E2 gene product is a repressor of the HPV18 regulatory region in human keratinocytes. Journal of Virology 63:4317–4324
    [Google Scholar]
  4. Bohm S., Wilczynski S. P., Pfister H., Iftner T. 1993; The predominant mRNA class in HPV16-infected genital neoplasias does not encode the E6 or the E7 protein. International Journal of Cancer 55:791–798
    [Google Scholar]
  5. Boukamp P., Petrussevska R. T., Breitkreutz D., Hornung J., Markham A., Fusenig N. E. 1988; Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. Journal of Cell Biology 106:761–771
    [Google Scholar]
  6. Bouvard V., Storey A., Pim D., Banks L. 1994; Characterization of the human papillomavirus E2 protein: evidence of trans-activation and trans-repression in cervical keratinocytes. EMBO Journal 13:5451–5459
    [Google Scholar]
  7. Cripe T. P., Haugen T. H., Turk J. P., Tabatabai F., Schmid P. G.III., Durst M., Gissmann L., Roman A., Turek L. P. 1987; Transcriptional regulation of the human papillomavirus 16 E6-E7 promoter by a keratinocyte-dependent enhancer, and by viral E2 trans-activator and repressor gene products: implications for cervical carcinogenesis. EMBO Journal 6:3745–3753
    [Google Scholar]
  8. de Villiers E. M. 1989; Heterogeneity of the human papillomavirus group. Journal of Virology 63:4898–4903
    [Google Scholar]
  9. Doorbar J., Parton A., Hartley K., Banks L., Crook T., Stanley M., Crawford L. 1990; Detection of novel splicing patterns in a HPV16-containing keratinocyte cell line. Virology 178:254–262
    [Google Scholar]
  10. Ferran M. C., McBride A. A. 1998; Transient viral DNA replication and repression of viral transcription are supported by the C-terminal domain of the bovine papillomavirus type 1 E1 protein. Journal of Virology 72:796–801
    [Google Scholar]
  11. Giri I., Yaniv M. 1988; Structural and mutational analysis of the E2 trans-activating proteins of papillomaviruses reveals three distinct functional domains. EMBO Journal 7:2823–2829
    [Google Scholar]
  12. Gorman C. M., Moffat L. F., Howard B. H. 1982; Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Molecular and Cellular Biology 2:1044–1051
    [Google Scholar]
  13. Hemstrom Nilsson C., Bakos E., Petry K. U., Schneider A., Durst M. 1996; Promoter usage in the E7 ORF of HPV16 correlates with epithelial differentiation and is largely confined to low-grade genital neoplasia. International Journal of Cancer 65:6–12
    [Google Scholar]
  14. Higgins G. D., Uzelin D. M., Phillips G. E., McEvoy P., Marin R., Burrell C. J. 1992; Transcription patterns of human papillomavirus type 16 in genital intraepithelial neoplasia: evidence for promoter usage within the E7 open reading frame during epithelial differentiation. Journal of General Virology 73:2047–2057
    [Google Scholar]
  15. Johnsen C. K., Stanley M., Norrild B. 1995; Analysis of human papillomavirus type 16 E5 oncogene expression in vitro and from bicistronic messenger RNAs. Intervirology 38:339–345
    [Google Scholar]
  16. Lupetti R., Mortarini R., Panceri P., Sensi M., Anichini A. 1996; Interaction with fibronectin regulates cytokine gene expression in human melanoma cells. International Journal of Cancer 66:110–116
    [Google Scholar]
  17. McBride A. A., Romanczuk H., Howley P. M. 1991; The papillomavirus E2 regulatory proteins. Journal of Biological Chemistry 266:18411–18414
    [Google Scholar]
  18. Phelps W. C., Howley P. M. 1987; Transcriptional trans-activation by the human papillomavirus type 16 E2 gene product. Journal of Virology 61:1630–1638
    [Google Scholar]
  19. Rohlfs M., Winkenbach S., Meyer S., Rupp T., Durst M. 1991; Viral transcription in human keratinocyte cell lines immortalized by human papillomavirus type-16. Virology 183:331–342
    [Google Scholar]
  20. Romanczuk H., Thierry F., Howley P. M. 1990; Mutational analysis of cis elements involved in E2 modulation of human papillomavirus type 16 P97 and type 18 P105 promoters. Journal of Virology 64:2849–2859
    [Google Scholar]
  21. Shally M., Alloul N., Jackman A., Muller M., Gissmann L., Sherman L. 1996; The E6 variant proteins E6I–E6IV of human papillomavirus 16: expression in cell free systems and bacteria and study of their interaction with p53. Virus Research 42:81–96
    [Google Scholar]
  22. Sherman L., Alloul N. 1992; Human papillomavirus type 16 expresses a variety of alternatively spliced mRNAs putatively encoding the E2 protein. Virology 191:953–959
    [Google Scholar]
  23. Sherman L., Schlegel R. 1996; Serum- and calcium-induced differentiation of human keratinocytes is inhibited by the E6 oncoprotein of human papillomavirus type 16. Journal of Virology 70:3269–3279
    [Google Scholar]
  24. Sherman L., Alloul N., Golan I., Durst M., Baram A. 1992; Expression and splicing patterns of human papillomavirus type-16 mRNAs in pre-cancerous lesions and carcinomas of the cervix, in human keratinocytes immortalized by HPV 16, and in cell lines established from cervical cancers. International Journal of Cancer 50:356–364
    [Google Scholar]
  25. Sherman L., Jackman A., Itzhaki H., Conrad Stoppler M., Koval D., Schlegel R. 1997; Inhibition of serum- and calcium-induced differentiation of human keratinocytes by HPV16 E6 oncoprotein: role of p53 inactivation. Virology 237:296–306
    [Google Scholar]
  26. Shirasawa H., Tomita Y., Kubota K., Kasai T., Sekiya S., Takamizawa H., Simizu B. 1988; Transcriptional differences of the human papillomavirus type 16 genome between precancerous lesions and invasive carcinomas. Journal of Virology 62:1022–1027
    [Google Scholar]
  27. Shirasawa H., Jin M. H., Shimizu K., Akutsu N., Shino Y., Simizu B. 1994; Transcription-modulatory activity of full-length E6 and E6*I proteins of human papillomavirus type 16. Virology 203:36–42
    [Google Scholar]
  28. Smotkin D., Wettstein F. O. 1986; Transcription of human papillomavirus type 16 early genes in a cervical cancer and a cancer-derived cell line and identification of the E7 protein. Proceedings of the National Academy of Sciences USA 83:4680–4684
    [Google Scholar]
  29. Smotkin D., Prokoph H., Wettstein F. O. 1989; Oncogenic and nononcogenic human genital papillomaviruses generate the E7 mRNA by different mechanisms. Journal of Virology 63:1441–1447
    [Google Scholar]
  30. Steger G., Corbach S. 1997; Dose-dependent regulation of the early promoter of human papillomavirus type 18 by the viral E2 protein. Journal of Virology 71:50–58
    [Google Scholar]
  31. Stubenrauch F., Pfister H. 1994; Low-affinity E2-binding site mediates downmodulation of E2 transactivation of the human papillomavirus type 8 late promoter. Journal of Virology 68:6959–6966
    [Google Scholar]
  32. Stubenrauch F., Leigh I. M., Pfister H. 1996; E2 represses the late gene promoter of human papillomavirus type 8 at high concentrations by interfering with cellular factors. Journal of Virology 70:119–126
    [Google Scholar]
  33. Tan S. H., Gloss B., Bernard H. U. 1992; During negative regulation of the human papillomavirus-16 E6 promoter, the viral E2 protein can displace Sp1 from a proximal promoter element. Nucleic Acids Research 20:251–256
    [Google Scholar]
  34. Tan S. H., Leong L. E., Walker P. A., Bernard H. U. 1994; The human papillomavirus type 16 E2 transcription factor binds with low cooperativity to two flanking sites and represses the E6 promoter through displacement of Sp1 and TFIID. Journal of Virology 68:6411–6420
    [Google Scholar]
  35. Thierry F. 1996; HPV proteins in the control of HPV transcription. In Papillomavirus Reviews: Current Research on Papillomaviruses pp 21–28 Edited by Lacey A. Leeds: Leeds University Press;
    [Google Scholar]
  36. Ushikai M., Lace M. J., Yamakawa Y., Kono M., Anson J., Ishiji T., Parkkinen S., Wicker P. N., Valentine M.-E., Davidson I., Turek L. P., Haugen T. I. 1994; trans activation by the full-length E2 proteins of human papillomavirus type 16 and bovine papillomavirus type 1 in vitro and in vivo : cooperation with activation domains of cellular transcription factors. Journal of Virology 68:6655–6666
    [Google Scholar]
  37. Zhao Y., Wein A. J., Levin R. M. 1995; Assessment of stress gene mRNAs (HSP-27, 60 and 70) in obstructed rabbit urinary bladder using a semi-quantitative RT-PCR method. Molecular and Cellular Biochemistry 148:1–7
    [Google Scholar]
  38. zur Hausen H. 1996; Papillomavirus infections – a major cause of human cancers. Biochimica et Biophysica Acta 1288:F55–F78
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-80-9-2461
Loading
/content/journal/jgv/10.1099/0022-1317-80-9-2461
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error