1887

Abstract

A tetracycline-inducible expression system has been established for the prion protein (PrP) in murine neuroblastoma cells (N2a). For this purpose, N2a cells were first stably transfected with either the tetracycline-controlled transactivator or the reverse transactivator. After selection of N2a clones which carried one of these transactivators, the murine PrP gene (Prnp) was introduced under the control of the transactivator-responsive promoter in a second round of stable transfection. Stably double-transfected N2a clones carrying the reverse type but not the normal transactivator were found to be fully inducible, giving a low background of Prnp expression before induction and high expression after induction. Stably double-transfected N2a cells were at least as productive as N2a cells over-expressing Prnp permanently under the control of a strong viral promoter. Furthermore, the selected N2a clones allowed the Prnp expression level to be quantitatively controlled by varying the level of the effector substance, the tetracycline-derivative doxycycline. The clones were fully controllable, as over-expression could be switched on and off as desired. These N2a clones may become an important tool for elucidation of the cellular function of PrP and may pave the way for the tetracycline-inducible expression of many genes in this neuroblastoma cell line.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-80-1-15
1999-01-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/80/1/0800015a.html?itemId=/content/journal/jgv/10.1099/0022-1317-80-1-15&mimeType=html&fmt=ahah

References

  1. Blochberger T. C., Cooper C., Peretz D., Tatzelt J., Griffith O. H., Baldwin M. A., Prusiner S. B. 1997; Prion protein expression in Chinese hamster ovary cells using a glutamine synthetase selection and amplification system. Protein Engineering 10:1465–1473
    [Google Scholar]
  2. Bohl D., Naffakh N., Heard J. M. 1997; Long-term control of erythropoietin secretion by doxycycline in mice transplanted with engineered primary myoblasts. Nature Medicine 3:299–305
    [Google Scholar]
  3. Brown D. R., Qin K., Herms J. W., Madlung A., Manson J., Strome R., Fraser P., Kruck T., von Bohlen A., Schulz-Schaeffer W., Giese A., Westaway D., Kretzschmar H. 1997a; The cellular prion protein binds copper in vivo . Nature 390:684–687
    [Google Scholar]
  4. Brown D. R., Schulz-Schaeffer W. J., Schmidt B., Kretzschmar H. A. 1997b; Prion protein-deficient cells show altered response to oxidative stress due to decreased SOD-1 activity. Experimental Neurology 146:104–112
    [Google Scholar]
  5. Büeler H., Fischer M., Lang Y., Bluethmann H., Lipp H.-P., DeArmond S. J., Prusiner S. B., Aguet M., Weissmann C. 1992; Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature 356:577–582
    [Google Scholar]
  6. Butler D. A., Scott M. R. D., Bockman J. M., Borchelt D. R., Taraboulos A., Hsiao K., Kingsbury D. T., Prusiner S. B. 1988; Scrapie-infected murine neuroblastoma cells produce protease-resistant prion proteins. Journal of Virology 62:1558–1564
    [Google Scholar]
  7. Collinge J., Whittington M. A., Sidle K. C. L., Smith C. J., Palmer M. S., Clarke A. R., Jefferys J. G. R. 1994; Prion protein is necessary for normal synaptic function. Nature 370:295–297
    [Google Scholar]
  8. Fischer M., Rulicke T., Raeber A., Sailer A., Moser M., Oesch B., Brandner S., Aguzzi A., Weissmann C. 1996; Prion protein (PrP) with amino-proximal deletions restoring susceptibility of PrP knockout mice to scrapie. EMBO Journal 15:1255–1264
    [Google Scholar]
  9. Gossen M., Bujard H. 1992; Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proceedings of the National Academy of Sciences, USA 89:5547–5551
    [Google Scholar]
  10. Gossen M., Freundlieb S., Bender G., Müller G., Hillen W., Bujard H. 1995; Transcriptional activation by tetracyclines in mammalian cells. Science 268:1766–1769
    [Google Scholar]
  11. Graham F. L., van der Eb A. J. 1973; A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52:456–467
    [Google Scholar]
  12. Herms J. W., Kretzschmar H. A., Titz S., Keller B. U. 1995; Patch-clamp analysis of synaptic transmission to cerebellar Purkinje cells of prion protein knockout mice. European Journal of Neuroscience 7:2508–2512
    [Google Scholar]
  13. Hillen W., Berens C. 1994; Mechanisms underlying expression of Tu 10 encoded tetracycline resistance. Annual Review of Microbiology 48:345–369
    [Google Scholar]
  14. Hölscher C., Delius H., Bürkle A. 1998; Overexpression of nonconvertible PrPc∆114–121 in scrapie-infected mouse neuroblastoma cells leads to trans-dominant inhibition of wild-type PrPSc accumulation. Journal of Virology 72:1153–1159
    [Google Scholar]
  15. Klebe R. J., Ruddle F. H. 1969; Neuroblastoma: cell culture analysis of a differentiating stem cell system. Journal of Cell Biology 43:69a
    [Google Scholar]
  16. LeGendre N. 1990; Immobilon-P transfer membrane: applications and utility in protein biochemical analysis. Biotechniques 9:788–805
    [Google Scholar]
  17. Lledo P. M., Tremblay P., DeArmond S. J., Prusiner S. B., Nicoll R. A. 1996; Mice deficient for prion protein exhibit normal neuronal excitability and synaptic transmission in the hippocampus. Proceedings of the National Academy of Sciences, USA 93:2403–2407
    [Google Scholar]
  18. Race R. E., Fadness L. H., Chesebro B. 1987; Characterization of scrapie infection in mouse neuroblastoma cells. Journal of General Virology 68:1391–1399
    [Google Scholar]
  19. Resnitzky D., Gossen M., Bujard H., Reed S. I. 1994; Acceleration of the G1/S phase transition by expression of cyclins D1 and E with an inducible system. Molecular and Cellular Biology 14:1669–1679
    [Google Scholar]
  20. Schmid S. L. 1995; Tet-á-tet: a call for cells expressing the tetracycline-controllable transactivator. Trends in Cell Biology 5:267–268
    [Google Scholar]
  21. Tobler I., Gaus S. E., Deboer T., Achermann P., Fischer M., Rulicke T., Moser M., Oesch B., McBride P. A., Manson J. C. 1996; Altered circadian activity rhythms and sleep in mice devoid of prion protein. Nature 380:639–642
    [Google Scholar]
  22. Vey M., Pilkuhn S., Wille H., Nixon R., DeArmond S. J., Smart E. J., Anderson R. G. W., Taraboulos A., Prusiner S. B. 1996; Subcellular colocalization of the cellular and scrapie prion proteins in caveolae-like membranous domains. Proceedings of the National Academy of Sciences, USA 93:14945–14949
    [Google Scholar]
  23. Westaway D., Cooper C., Turner S., Da Costa M., Carlson G. A., Prusiner S. B. 1994; Structure and polymorphism of the mouse prion protein gene. Proceedings of the National Academy of Sciences, USA 91:6418–6495
    [Google Scholar]
  24. Wong K., Qiu Y., Hyun W., Nixon R., VanCleff J., Sanchez-Salazar J., Prusiner S. B., DeArmond S. J. 1996; Decreased receptor-mediated calcium response in prion-infected cells correlates with decreased membrane fluidity and IP3 release. Neurology 47:741–750
    [Google Scholar]
  25. Yin D. X., Zhu L., Schimke R. T. 1996; Tetracycline-controlled gene expression system achieves high-level and quantitative control of gene expression. Analytical Biochemistry 235195–201
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-80-1-15
Loading
/content/journal/jgv/10.1099/0022-1317-80-1-15
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error