1887

Abstract

Recently, a new procedure was developed which allowed for the first time the isolation of a hyperthermophilic archaeum tracked by 16S rRNA analysis from a terrestrial hot solfataric spring (‘Obsidian Pool’, Yellowstone National Park, WY, USA). This novel isolate is characterized here. Cells are round cocci with a diameter of 0·2-0·8 µm, occurring singly, in pairs, short chains and in grape-like aggregates. The aggregates exhibit a weak bluish-green fluorescence under UV radiation at 420 nm. The new isolate is an anaerobic obligate heterotroph, using preferentially yeast extract for growth. The metabolic products include CO, H, acetate and isovalerate. Growth is observed between 65 and 90 °C (optimum: 85 °C), from pH 5·0 to 7·0 (optimum: 6·5) and up to 0·7% NaCI. The apparent activation energy for growth is about 149 kJ mol. Elemental sulfur or hydrogen inhibits growth. The core lipids consist mainly of acyclic and cyclic glycerol diphytanyl tetraethers. The cell envelope contains a cytoplasmic membrane covered by an amorphous layer of unknown composition; there is no evidence for a regularly arrayed surface-layer protein. The G+C content is 46 mol%. On the basis of 16S rRNA sequence comparisons in combination with morphological, physiological and biochemical properties, the isolate represents a new genus within the , which has been named The type species is , the type strain is isolate M11TL (= DSM 11486).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-48-1-31
1998-01-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/48/1/ijs-48-1-31.html?itemId=/content/journal/ijsem/10.1099/00207713-48-1-31&mimeType=html&fmt=ahah

References

  1. Balch W. E., Wolfe R. S. 1976; New approach to the cultivation of methanogenic bacteria: 2-mercaptoethane- sulfonic acid (HS-CoM)-dependent growth of Methan- bacterium ruminantium in a pressurized atmosphere. Appl Environ Microbiol 32:781–791
    [Google Scholar]
  2. Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S. 1979; Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296
    [Google Scholar]
  3. Barns S. M., Fundyga R. E., Jeffries M. W., Pace N.R. 1994; Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proc Natl AcadSci USA 91:1609–1613
    [Google Scholar]
  4. Barns S. M., Fundyga R. E., Jeffries M. W., Pace N.R. 1994; Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Abstr 94 th Gen Meet Am Soc Microbiol abstract 253
    [Google Scholar]
  5. Blöchl E., Burggraf S., Fiala G., Lauerer G., Huber G., Huber R., Rachel R., Segerer A., Stetter K. O., Völkl P. 1995; Isolation, taxonomy and phylogeny of hyperthermophilic microorganisms. World J Microbiol Bio- technol 11:1–8
    [Google Scholar]
  6. Blöchl E., Rachel R., Burggraf S., Hafenbradl D., Jannasch L.W., Stetter K. O. 1997; Pyrolobus fumarii, gen. and sp. nov. represents a novel group of archaea, extending the upper temperature border of life to 113 °C. Extremophiles 1:14–21
    [Google Scholar]
  7. Brenner D. J. 1973; Deoxyribonucleic acid reassociation in the taxonomy of enteric bacteria. Int J Syst Bacteriol 33:298–307
    [Google Scholar]
  8. Brock T. D., Brock K. M., Belly R. T., Weiss R. L. 1972; Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch Mikrobiol 84:54–68
    [Google Scholar]
  9. Bonch-Osmolovskaya E. A., Slesarev A. I., Miroshnichenko M. L., Svetlichnaya T. P., Alekseev V. A. 1988; Characteristics of Desulfurococcus amylolyticus, a new extreme- thermophilic archaebacterium from hot volcanic vents of Kamchatka and Kunsashir. Microbiology (English translation of Mikrobiologiya) 57:94–101
    [Google Scholar]
  10. Bonch-Osmolovskaya E. A., Stetter K. O. 1991; Interspecies hydrogen transfer in cocultures of thermophilic Archaea. Syst Appl Microbiol 14:205–208
    [Google Scholar]
  11. Brosius J., Palmer J. L., Kennedy J. P., Noller H. F. 1978; Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci USA 75:4801–4805
    [Google Scholar]
  12. Burggraf S., Huber H., Stetter K. O. 1997; Reclassification of the crenarchaeal orders and families in accordance with 16S rRNA sequence data. Int J Syst Bacteriol 47:657–660
    [Google Scholar]
  13. Burggraf S., Jannasch H. W., Nicolaus B., Stetter K.O. 1990; Archaeoglobus profundus sp. nov., represents a new species within the sulfate-reducing archaebacteria. Syst Appl Microbiol 13:24–28
    [Google Scholar]
  14. De Rosa M., Gambacorta A. 1994 Archaeal lipids. In Chemical Methods in Prokaryotic Systematics pp 197–264 Edited by Goodfellow M., O’Donnell A. G. Chichester: Wiley;
    [Google Scholar]
  15. Fiala G., Stetter K. O., Jannasch H. W., Langworthy T. A., Madon J. 1986; Staphylothermus marinus sp. nov. represents a novel genus of extremely thermophilic submarine heterotrophic archaebacteria growing up to 98 °C. Syst Appl Microbiol 8:106–113
    [Google Scholar]
  16. Gillespie S., Gillespie D. 1971; Ribonucleic acid- deoxyribonucleic acid hybridization in aqueous solutions and in solutions containing formamide. Biochem J 125:481–187
    [Google Scholar]
  17. Gounot A. M. 1986; Psychrophilic and psychrotrophic microorganisms. Experientia 42:1192–1197
    [Google Scholar]
  18. Herendeen S. L., Van Bogelen R. A., Neidhardt F. C. 1979; Levels of major proteins of Escherichia coli during growth at different temperatures. J Bacteriol 139:185–194
    [Google Scholar]
  19. Hoaki T., Wirsen C. O., Hanzawa S., Maruyama T., Jannasch H. W. 1993; Amino acid requirements of two hyperthermophilic archaeal isolates from deep-sea vents, Desulfurococcus strain SY and Pyrococcus strain GB-D. Appl Environ Microbiol 59:610–613
    [Google Scholar]
  20. Holz G., Bergmeyer H. U. 1974 H* Acetat: Bestimmung mit Acetat kinase und Hydroxylamin. In Methoden der Enzymatischen Analyse pp 1574–1578 Edited by Bergmeyer H. U. Weinheim: Verlag Chemie;
    [Google Scholar]
  21. Huber R., Burggraf S., Mayer T., Barns S. M., RoBnagel P., Stetter K. O. 1995; Isolation of a hyperthermophilic archaeum predicted by in situ RNA analysis. Nature 376:57–58
    [Google Scholar]
  22. Huber R., Burggraf S., Mayer T., Barns S. M., RoBnagel P., Stetter K. O. 1996; Isolation of hyperthermophilic archaea predicted by in situ 16S rRNA analysis. Abstracts of the 11th Annual Meeting of VAAM. Abstract PB054 p 84
    [Google Scholar]
  23. Huber R., Kristjansson J. K., Stetter K. O. 1987; Pyro-baculum gen. nov., a new genus of neutrophilic, rod-shaped archaebacteria growing optimally at 100 °C. Arch Microbiol 149:95–101
    [Google Scholar]
  24. Huber R., RoBnagel P., Woese C. R., Rachel R., Langworthy T. A., Stetter K. O. 1996; Formation of ammonium from nitrate during chemolithoautotrophic growth of the ex-tremely thermophilic bacterium Ammonifex degensii gen. nov. sp. nov. Syst Appl Microbiol 19:40–49
    [Google Scholar]
  25. Huber R., Stöhr J., Hohenhaus S., Rachel R., Burggraf S., Jannasch H. W., Stetter K. O. 1995; Thermococcus chitonophagus sp. nov., a novel, chitin-degrading, hyper-thermophilic archaeum from a deep-sea hydrothermal vent environment. Arch Microbiol 164:255–264
    [Google Scholar]
  26. Huber R., Wilharm T., Huber D., Trincone A., Burggraf S., König H., Rachel R., Rockinger I., Fricke H., Stetter K.O. 1992; Aquifex pyrophilus gen.nov. sp.nov., represents a novel group of marine hyperthermophilic hydrogen-oxidizing bacteria. Syst Appl Microbiol 15:340–351
    [Google Scholar]
  27. Isaksen M. F., Jørgensen B. B. 1996; Adaptation of psychrophilic and psychrotrophic sulfate-reducing bacteria to permanently cold marine environments. Appl Environ Microbiol 62408–414
    [Google Scholar]
  28. Jander G., Blasius E. 1987 Einführung in das anorganisch- chemische Praktikum. Stuttgart: S. Hirzel Verlag;
    [Google Scholar]
  29. Jannasch H. W., Wirsen C. O., Molyneaux S. J., Langworthy T. A. 1988; Extremely thermophilic fermentative archaebacteria of the genus Desulfurococcus from deep- sea hydrothermal vents. Appl Environ Microbiol 54:1203–1209
    [Google Scholar]
  30. Kane M. D., Poulsen L. K., Stahl D. A. 1993; Monitoring the enrichment and isolationof sulfate-reducing bacteria by using oligonucleotide hybridization probes designed from environmentally derived 16S rRNA sequences. Appl Environ Microbiol 59:682–686
    [Google Scholar]
  31. Kelly R. B., Cozzarelli N.R., Deutscher M. P., Lehman J. R., Kornberg A. 1970; Enzymatic synthesis of deoxyribonucleic acid. XXXII. Replication of duplex deoxyribonucleic acid by polymerase at a single strand break. J Biol Chem 245:39–45
    [Google Scholar]
  32. König H. 1984; Isolation and characterization of Methano- bacterium uliginosum sp. nov. from a marshy soil. Can J Microbiol 30:1477–1481
    [Google Scholar]
  33. Lauerer G., Kristjansson J. K., Langworthy T. A., König H., Stetter K. O. 1986; Methanothermus sociabilis sp. nov., a second species within the Methanothermaceae growing at 97 °C. Syst Appl Microbiol 8:100–105
    [Google Scholar]
  34. Lowry O. H., Rosebrough N. J., Farr A. L., Jandell R. J. 1951; Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275
    [Google Scholar]
  35. Marmur J., Doty P. 1961; Thermal renaturation of deoxyribonucleic acids. J Mol Biol 3:585–594
    [Google Scholar]
  36. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118
    [Google Scholar]
  37. Meyer S. A., Schleifer K. H. 1978; Deoxyribonucleic acid reassociation in the classification of coagulase-positive staphylococci. Arch Microbiol 117:183–188
    [Google Scholar]
  38. Miller G. L. 1959; Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428
    [Google Scholar]
  39. Miroshnichenko M. L., Bonch-Osmolovskaya E. A., Neuner A., Kostrikina N. A., Chernych N. A., Alekseev V. A. 1989; Thermococcus stetteri sp. nov., a new extremely thermophilic marine sulfur-metabolizing archaebacterium. Syst Appl Microbiol 12:257–262
    [Google Scholar]
  40. Mullis K. B., Faloona F. A. 1987; Specific synthesis of DNA in vitro via a polymerase-catalysed chain reaction. Methods Enzymol 155:335–350
    [Google Scholar]
  41. Peters J., Nitsch M., Kllhlmorgen B. 10 other authors 1995; Tetrabrachion: A filamentous archaebacterial surface protein assembly of unusual structure and extreme stability. J Mol Biol 245:385–401
    [Google Scholar]
  42. Peterson G. L. 1979; Review of the folin phenol protein quantitation method of Lowry, Rosebrough, Farr, and Randall. Anal Biochem 100:201–220
    [Google Scholar]
  43. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G.T., Mullis K. B., Erlich H. A. 1988; Primer- directed enzymatic amplification of DNA with thermostable DNA polymerase. Science 239:487–491
    [Google Scholar]
  44. Saiki R. K., Scharf S. J., Faloona F., Mullis K. B., Horn G. T., Erlich H. A., Arnheim N. 1985; Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230:1350–1354
    [Google Scholar]
  45. Segerer A. H., Trincone A., Gahrtz M., Stetter K.O. 1991; Stygiolobus azoricus gen. nov., sp. nov., represents a novel genus of anaerobic, extremely thermoacidophilic archaebacteria of the order Sulfolobales. Int J Syst Bacteriol 41:495–501
    [Google Scholar]
  46. Stetter K. O. 1992 Life at the upper temperature border. In Frontiers of Life, pp 195–519 Edited by Tran Thanh Van J., Tran Thanh Van K., Mounolou J. C., Schneider J., McKay C. Gif-sur-Yvette: Editions Frontieres;
    [Google Scholar]
  47. Stetter K. O. 1995; Microbial life in hyperthermal environ-ments. ASM News 61:285–290
    [Google Scholar]
  48. Stetter K. O., Fiala G., Huber G., Huber R., Segerer A. 1990; Hyperthermophilic microorganisms. FEMS Microbiol Rev 75:117–124
    [Google Scholar]
  49. Stetter K. O., Segerer A., Zillig W., Huber G., Fiala G., Huber R., König H. 1986; Extremely thermophilic sulfur- metabolizing archaebacteria. Syst Appl Microbiol 7:393–397
    [Google Scholar]
  50. Trincone A., Lanzotti V., Nicolaus B., Zillig W., De Rosa M., Gambacorta A. 1989; Comparative lipid composition of aerobically and anaerobically grown Desulfurolobus ambiva- lens, an autotrophic thermophilic archaeon. J Gen Microbiol 135:2751–2757
    [Google Scholar]
  51. Völkl P., Huber R., Drobner E., Rachel R., Burggraf S., Trincone A., Stetter K. O. 1993; Pyrobaculum aerophilum sp. nov., a novel nitrate-reducing hyperthermophilic archaeum. Appl Environ Microbiol 59:2918–2926
    [Google Scholar]
  52. Wheelis M. L., Kandler O., Woese C. R. 1992; On the nature of global classification. Proc Natl Acad Sci USA 89:2930–2934
    [Google Scholar]
  53. Wildhaber I., Santarius U., Baumeister W. 1987; Threedimensional structure of the surface protein of Desulfurococcus mobilis. J Bacteriol 169:5563–5568
    [Google Scholar]
  54. Woese C. R., Kandler O., Wheelis M. L. 1990; Towards a natural system of organisms: proposal for the domains archaea, bacteria and eukarya. Proc Natl Acad Sci USA 87:4576–4579
    [Google Scholar]
  55. Zillig W., Stetter K. O., Prangishvilli D., Schäfer W., Wunderl S., Janekovic D., Holz I., Palm P. 1982; Desulfurococcacae, the second family of the extremely thermophilic, anaerobic, sulfur-respiring Thermoproteales. Zentrabl Bakteriol Hyg Abt Orig C 3:304–317
    [Google Scholar]
  56. Stetter H.O., Gaag G. 1983; Reduction of molecular sulphur by methanogenic bacteria. Nature 305:309–311
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-48-1-31
Loading
/content/journal/ijsem/10.1099/00207713-48-1-31
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error