1887

Abstract

The 16S rRNA gene sequences of 34 named and unnamed clostridial strains were determined by PCR direct sequencing and were compared with more than 80 previously determined clostridial sequences and the previously published sequences of representative species of other low- G+C-content gram-positive genera, thereby providing an almost complete picture of the genealogical interrelationships of the clostridia. The results of our phylogenetic analysis corroborate and extend previous findings in showing that the genus is extremely heterogeneous, with many species phylogenetically intermixed with other sporeforming and non-sporeforming genera. The genus is clearly in need of major revision, and the rRNA structures defined in this and previous studies may provide a sound basis for future taxonomic restructuring. The problems and different possibilities for restructuring are discussed in light of the phenotypic and phylogenetic data, and a possible hierarchical structure for the clostridia and their close relatives is presented. On the basis of phenotypic criteria and the results of phylogenetic analyses the following five new genera and 11 new combinations are proposed: gen. nov., with comb. nov.; gen. nov., with comb. nov.; gen. nov., with comb. nov. and comb. nov.; gen. nov., with comb. nov.; gen. nov., with comb. nov.; comb. nov.; comb. nov.; comb. nov.; comb. nov.; and comb. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-44-4-812
1994-10-01
2024-03-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/44/4/ijs-44-4-812.html?itemId=/content/journal/ijsem/10.1099/00207713-44-4-812&mimeType=html&fmt=ahah

References

  1. Ash C., Farrow J. A. E., Wallbanks S., Collins M. D. 1991; Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small-subunit ribosomal RNA sequences. Lett. Appl. Microbiol. 13:202–206
    [Google Scholar]
  2. Ash C., Priest F. G., Collins M. D. 1993; Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test: proposal for the creation of a new genus Paenibacillus. Antonie van Leeuwenhoek 64:253–260
    [Google Scholar]
  3. Cato E., Stackebrandt E. 1989; Taxonomy and phylogeny. 1–26 In Minton N. P., Clark D. J. (ed.) Clostridia Plenum Press; New York:
    [Google Scholar]
  4. Cato E. P., George W. L., Finegold S. M. 1986; Genus Clostridium. 1141–1200 In Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. (ed.) Bergey’s manual of systematic bacteriology vol. 2 Williams and Wilkins; Baltimore:
    [Google Scholar]
  5. Collins M. D., Rodrigues U. M., Dainty R. H., Edwards R. A., Roberts T. A. 1992; Taxonomic studies on a psychrophilic Clostridium from vacuum packed beef: description of Clostridium estertheticum sp. nov. FÈMS Microbiol. Lett. 96:235–240
    [Google Scholar]
  6. Dehning I., Schink B. 1989; Two new species of anaerobic oxalate-fermenting bacteria, Oxalobacter vibrioformis sp. nov. and Clostridium oxalicum sp. nov., from sediment samples. Arch. Microbiol. 153:79–84
    [Google Scholar]
  7. Devereux J., Haeberli P., Smithies D. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 12:387–395
    [Google Scholar]
  8. Dot T. D., Osawa R., Stackebrandt E. 1993; Phascolarctobacterium faecium gen. nov., spec, nov., a novel taxon of the Sporomusa group of bacteria. Syst. Appl. Microbiol. 16:380–384
    [Google Scholar]
  9. Duncan A. J., Carman R. J., Olsen G. L., Wilson K. H. 1993; Assignment of the agent of Tyzzer’s disease to Clostridium piliforme comb. nov. on the basis of 16S rRNA sequence analysis. Int. J. Syst. Bacteriol. 43:314–318
    [Google Scholar]
  10. Ezaki T., Li N., Hashimoto Y., Miura H., Yamamoto H. 1994; 16S ribosomal DNA sequences of anaerobic cocci and proposal of Ruminococcus hansenii comb. nov. and Ruminococcus productus comb. nov. Int. J. Syst. Bacteriol. 44:130–136
    [Google Scholar]
  11. Farrow J. A. E., Ash C., Wallbanks S., Collins M. D. 1992; Phylogenetic analysis of the genera Planococcus, Marinococcus and Sporosarcina and their relationships to members of the genus Bacillus. FEMS Microbiol. Lett. 93:167–172
    [Google Scholar]
  12. Felsenstein J. 1989; PHYLIP—phylogeny inference package (version 3.2). Cladistics 5:164–166
    [Google Scholar]
  13. Fitch W. M., Margoliash E. 1967; Construction of phylogenetic trees: a method based on mutation distances as estimated from cytochrome c sequences is of general applicability. Science 155:279–284
    [Google Scholar]
  14. Fontaine F. E., Peterson W. H., McCoy E., Johnson M. J. 1942; A new type of glucose fermentation by Clostridium thermoaceticum n. sp. J. Bacteriol. 43:701–715
    [Google Scholar]
  15. Fox G. E., Stackebrandt E., Hespell R. B., Gibson J., Maniloff J., Dyer T. A., Wolfe R. S., Balch W. E., Tanner R. S., Magrum L. J., Zahlen L. B., Blakemore R., Gupta R., Bonen L., Lewis B. J., Stahl D. A., Luehrsen K. R., Chen K., Woese C. R. 1980; The phylogeny of prokaryotes. Science 209:457–463
    [Google Scholar]
  16. Gottschalk E. M., Hippe H., Patzke F. 1991; Creatinine deiminase (EC3. 4. 3. 21) from bacterium BNII: purification, properties and applicability in serum/urine creatinine assay. Clin. Chim. Acta 204:223–238
    [Google Scholar]
  17. Hermann M., Knerr H. J., Mai N., Gross A., Kaltwasser H. 1992; Creatinine and N-methylhydantoin degradation in two newly isolated Clostridium species. Arch. Microbiol. 157:395–401
    [Google Scholar]
  18. Hippe H., Andreesen J. R., Gottschalk G. 1992; The genus Clostridium—nonmedical. 1800–1866 In Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. (ed.) The prokaryotes vol. 2 Springer-Verlag; New York:
    [Google Scholar]
  19. Hutson R. A., Thompson D. E., Collins M. D. 1993; Genetic interrelationships of saccharolytic Clostridium botulinum types B, E and F and related clostridia as revealed by small-subunit rRNA gene sequences. FEMS Microbiol. Lett. 108:103–110
    [Google Scholar]
  20. Hutson R. A., Thompson D. E., Lawson P. A., Schocken-Itturino R. P., Böttger E. C., Collins M. D. 1993; Genetic interrelationships of proteolytic Clostridium botulinum types A, B, and F and other members of the Clostridium botulinum complex as revealed by small-subunit rRNA gene sequences. Antonie van Leeuwenhoek 64:278–283
    [Google Scholar]
  21. Jin F., Yamasato K., Toda K. 1988; Clostridium thermocopriae sp. nov., a cellulolytic thermophile from animal feces, compost, soil, and a hot spring in Japan. Int. J. Syst. Bacteriol. 38:279–281
    [Google Scholar]
  22. Johnson J. L., Francis B. S. 1975; Taxonomy of the Clostridia: ribosomal ribonucleic acid homologies among the species. J. Gen. Microbiol. 88:229–244
    [Google Scholar]
  23. Kelly W. J., Asmundson R. V., Hopcroft D. H. 1987; Isolation and characterization of a strictly anaerobic, cellulolytic spore former: Clostridium chartatabidum sp. nov. Arch. Microbiol. 147:169–173
    [Google Scholar]
  24. Krasilnikov N. A., Pivovarov G. E., Duda V. I. 1971; Physiological properties of anaerobic soil bacteria which form vesicular caps on their spores. Microbiology (Engl. Transi. Mikrobiologiya) 40:783–788
    [Google Scholar]
  25. Krumholz L. R., Bryant M. P. 1985; Clostridium pfennigii sp. nov. uses methoxyl groups of monobenzenoids and produces butyrate. Int. J. Syst. Bacteriol. 35:454–456
    [Google Scholar]
  26. Lawson P. A., Gharbia S. E., Shah H. N., Clark D. R. 1989; Recognition of Fusobacterium nucleatum subgroups Fn-1, Fn-2 and Fn-3 by ribosomal RNA gene restriction patterns. FEMS Microbiol. Lett. 65:41–46
    [Google Scholar]
  27. Lawson P. A., Perez P. L., Hutson R. A., Hippe H., Collins M. D. 1993; Towards a phylogeny of the Clostridia based on 16S rRNA sequences. FEMS Microbiol. Lett. 113:87–92
    [Google Scholar]
  28. Leigh J. A., Wolfe R. S. 1983; Acetogenium kivui, a thermophilic acetogenic bacterium. Int. J. Syst. Bacteriol. 33:886
    [Google Scholar]
  29. Li Y., Engle M., Weiss N., Mandelco L., Wiegel J. 1994; Clostridium thermoalcaliphilum sp. nov., an anaerobic and thermo-tolerant facultative alkaliphile. Int. J. Syst. Bacteriol. 44:111–118
    [Google Scholar]
  30. Li Y., Mandelco L., Wiegel J. 1993; Isolation and characterization of a moderately thermophilic alkaliphile, Clostridium paradoxum sp. nov. Int. J. Syst. Bacteriol. 43:450–460
    [Google Scholar]
  31. Love D. N., Jones R. F., Bailey M. 1979; Clostridium villosum sp. nov. from subcutaneous abscesses in cats. Int. J. Syst. Bacteriol. 29:241–244
    [Google Scholar]
  32. Ludwig W., Weizenegger M., Kilpper-Bälz R., Schleifer K. H. 1988; Phylogenetic relationships of anaerobic streptococci. Int. J. Syst. Bacteriol. 38:15–18
    [Google Scholar]
  33. McClung L. S. 1935; Studies on anaerobic bacteria. IV. Taxonomy of cultures of a thermophilic species causing “swells” of canned food. J. Bacteriol. 29:189–202
    [Google Scholar]
  34. Olsen G. J., Overbeek R., Larsen N., Marsh T. L., McCaughey M. J., Maciukenas M. A., Kuan W. M., Macke T. J., Xing Y., Woese C. R. 1992; The Ribosomal Database Project. Nucleic Acids Res. 20:2199–2200
    [Google Scholar]
  35. Paster B. J., Russell J. B., Yang C. M. J., Chow J. M., Woese C. R., Tanner R. 1993; Phylogeny of the ammonia-producing ruminai bacteria Peptostreptococcus anaerobius, Clostridium sticklandii, and Clostridium aminophilum sp. nov. Int. J. Syst. Bacteriol. 43:107–110
    [Google Scholar]
  36. Patel B. K. C., Monk C., Littleworth H., Morgan H. W., Daniel R. M. 1987; Clostridium fervidus sp. nov., a new chemoorganotrophic acetogenic thermophile. Int. J. Syst. Bacteriol. 37:123–126
    [Google Scholar]
  37. Rainey F. A., Stackebrandt E. 1993; 16S rRNA analysis reveals phylogenetic diversity among the polysaccharolytic clostridia. FEMS Microbiol. Lett. 113:125–128
    [Google Scholar]
  38. Rainey F. A., Ward N. L., Morgan H. W., Toalster R., Stackebrandt E. 1993; Phylogenetic analysis of anaerobic thermophilic bacteria: aid for their reclassification. J. Bacteriol. 175:4772–4779
    [Google Scholar]
  39. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406–425
    [Google Scholar]
  40. Schink B., Pfenning N. 1982; Propionigenium modestum gen. nov., sp. nov., a new strictly anaerobic, nonsporing bacterium growing on succinate. Arch. Microbiol. 133:209–216
    [Google Scholar]
  41. Schleifer K. H., Leuteritz M., Weiss N., Ludwig W., Kirchhof G., Rufer H. S. 1990; Taxonomic study of anaerobic, gram-negative, rod-shaped bacteria from breweries: emended description of Pectinatus cerevisiiphilus and descriptions of Pectinatus frisingensis sp. nov., Selenomonas lacticifex sp. nov., Zymophilus raffinosivorans gen. nov., sp. nov., and Zymophilus paucivorans sp. nov. Int. J. Syst. Bacteriol. 40:19–27
    [Google Scholar]
  42. Smith L. D. S., Cato E. P. 1974; Clostridium durum sp. nov., the predominant organism in a sediment core from the Black Sea. Can. J. Microbiol. 20:1393–1397
    [Google Scholar]
  43. Stackebrandt E. 1992; Unifying phylogeny and phenotypic diversity. 19–47 In Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. (ed.) The prokaryotes vol. 1 Springer-Verlag; New York:
    [Google Scholar]
  44. Stadtman E. R., Stadtman T. C., Pastan I., Smith L. D. S. 1972; Clostridium barkeri sp. n. J. Bacteriol. 110:758–760
    [Google Scholar]
  45. Suen J. C., Hatheway C. L., Steigerwalt A. G., Brenner D. J. 1988; Clostridium argentinense sp. nov.: a genetically homogeneous group composed of all strains of Clostridium botulinum toxin type G and some nontoxigenic strains previously identified as Clostridium subterminale and Clostridium hastiforme. Int. J. Syst. Bacteriol. 38:375–381
    [Google Scholar]
  46. Tanner R. S., Stackebrandt E., Fox G. E., Gupta L. J., Magrum L. J., Woese C. R. 1982; A phylogenetic analysis of anaerobic eubacteria capable of synthesizing acetate from carbon dioxide. Curr. Microbiol. 7:127–132
    [Google Scholar]
  47. Tanner R. S., Stackebrandt E., Fox G. E., Woese C. R. 1981; A phylogenetic analysis of Acetobacterium woodii, Clostridium barkeri, Clostridium butyricum, Clostridium lituseburense, Eubacterium limosum, and Eubacterium tenue. Curr. Microbiol. 5:35–38
    [Google Scholar]
  48. Weisburg W. G., Tully J. G., Rose D. L., Petzel J. P., Oyaizu H., Yang D., Mandelco L., Sechrest J., Lawrence T. G., Van Etten J., Maniloff J., Woese C. R. 1989; A phylogenetic analysis of the mycoplasmas: basis for their classification. J. Bacteriol. 171:6455–6467
    [Google Scholar]
  49. Wiegel J., Braun M., Gottschalk G. 1981; Clostridium thermoautotrophicum species novum, a thermophile producing acetate from molecular hydrogen and carbon dioxide. Curr. Microbiol. 5:255–260
    [Google Scholar]
  50. Willems A., Collins M. D. 1994; Phylogenetic placement of Sarcina ventriculi and Sarcina maxima within group I Clostridium: a possible problem for the future revision of the genus Clostridium. Int. J. Syst. Bacteriol. 44:591–593
    [Google Scholar]
  51. Wisotzkey J. D., Jurtshuk P. Jr., Fox G. E., Deinhard G., Poralla K. 1992; Comparative sequence analysis of the 16S rRNA of Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus: proposal for a new genus, Alicyclobacillus gen. nov. Int. J. Syst. Bacteriol. 42:263–269
    [Google Scholar]
  52. Woese C. R. 1987; Bacterial evolution. Microbiol. Rev. 51:221–271
    [Google Scholar]
  53. Zhao H., Yang D., Woese C. R., Bryant M. P. 1993; Assignment of fatty acid-oxidizing syntrophic bacteria to Syntrophomonadaceae fam. nov. on the basis of 16S rRNA sequence analysis. Int. J. Syst. Bacteriol. 43:278–286
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-44-4-812
Loading
/content/journal/ijsem/10.1099/00207713-44-4-812
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error